Skip to content

descriptors

This module includes definitions for generic unit descriptors and unit descriptors.

A unit descriptor is an interface that describes a measurement unit. It can represent anything like °C, m^3, mol/m^3/s etc.

A generic unit descriptor is an interface that describes a generic measurement unit. It can represent e.g. a temperature unit, a volume unit, a reaction rate unit etc.

AliasMeasurementUnit

Bases: MeasurementUnit

Base class for common composite units of physical quantities.

Subclasses of MeasurementUnit represent only primitive physical quantities. However, many common physical properties have composite units (e.g. pressure, force, energy, etc), thus subclasses of this class alias composite units as primitive ones.

Only very common composite units should be aliased.

e.g. you can create an alias for pressure units, instead of using mass * length / ( time^2) units.

Examples:

>>> class PressureUnit(AliasMeasurementUnit):
...     BAR = "bar"
...     PASCAL = "Pa"
...     KILO_PASCAL = "kPa"
...     PSI = "psi"
Source code in src/property_utils/units/descriptors.py
class AliasMeasurementUnit(MeasurementUnit):
    """
    Base class for common composite units of physical quantities.

    Subclasses of `MeasurementUnit` represent only primitive physical quantities.
    However, many common physical properties have composite units (e.g. pressure, force,
    energy, etc), thus subclasses of this class alias composite units as primitive ones.

    Only very common composite units should be aliased.

    e.g. you can create an alias for pressure units, instead of using mass * length / (
        time^2) units.

    Examples:
        >>> class PressureUnit(AliasMeasurementUnit):
        ...     BAR = "bar"
        ...     PASCAL = "Pa"
        ...     KILO_PASCAL = "kPa"
        ...     PSI = "psi"
    """

    @staticmethod
    def from_descriptor(descriptor: UnitDescriptor) -> MeasurementUnit:
        """
        Create an AliasMeasurementUnit from given descriptor.
        If descriptor is already an AliasMeasurementUnit, it returns the same object.

        This function does not serve as a constructor for AliasMeasurementUnit, rather
        it is intended to be used to convert an unknown unit descriptor to an
        AliasMeasurementUnit.

        Subclasses should implement aliased_generic_descriptor and alias_mapping
        methods.

        Raises `UnitDescriptorTypeError` if given descriptor cannot be translated
        to an AliasMeasurementUnit  instance.

        Examples:
            >>> class PressureUnit(AliasMeasurementUnit):
            ...     BAR = "bar"

            >>> bar = MeasurementUnit.from_descriptor(PressureUnit.BAR**(-1))
            >>> bar
            <PressureUnit: bar>
        """
        if isinstance(descriptor, Dimension) and isinstance(
            descriptor.unit, AliasMeasurementUnit
        ):
            return descriptor.unit
        if isinstance(descriptor, AliasMeasurementUnit):
            return descriptor
        raise UnitDescriptorTypeError(
            f"cannot create AliasMeasurementUnit from descriptor {descriptor}"
        )

    @classmethod
    def aliased_generic_descriptor(cls) -> GenericUnitDescriptor:
        """
        Implement this method by returning the generic of the unit descriptor that this
        measurement unit aliases.

        Examples:
            >>> class LengthUnit(MeasurementUnit): ...
            >>> class AreaUnit(AliasMeasurementUnit):
            ...     @classmethod
            ...     def aliased_generic_descriptor(cls):
            ...         return LengthUnit**2
        """
        raise NotImplementedError

aliased_generic_descriptor() classmethod

Implement this method by returning the generic of the unit descriptor that this measurement unit aliases.

Examples:

>>> class LengthUnit(MeasurementUnit): ...
>>> class AreaUnit(AliasMeasurementUnit):
...     @classmethod
...     def aliased_generic_descriptor(cls):
...         return LengthUnit**2
Source code in src/property_utils/units/descriptors.py
@classmethod
def aliased_generic_descriptor(cls) -> GenericUnitDescriptor:
    """
    Implement this method by returning the generic of the unit descriptor that this
    measurement unit aliases.

    Examples:
        >>> class LengthUnit(MeasurementUnit): ...
        >>> class AreaUnit(AliasMeasurementUnit):
        ...     @classmethod
        ...     def aliased_generic_descriptor(cls):
        ...         return LengthUnit**2
    """
    raise NotImplementedError

from_descriptor(descriptor) staticmethod

Create an AliasMeasurementUnit from given descriptor. If descriptor is already an AliasMeasurementUnit, it returns the same object.

This function does not serve as a constructor for AliasMeasurementUnit, rather it is intended to be used to convert an unknown unit descriptor to an AliasMeasurementUnit.

Subclasses should implement aliased_generic_descriptor and alias_mapping methods.

Raises UnitDescriptorTypeError if given descriptor cannot be translated to an AliasMeasurementUnit instance.

Examples:

>>> class PressureUnit(AliasMeasurementUnit):
...     BAR = "bar"
>>> bar = MeasurementUnit.from_descriptor(PressureUnit.BAR**(-1))
>>> bar
<PressureUnit: bar>
Source code in src/property_utils/units/descriptors.py
@staticmethod
def from_descriptor(descriptor: UnitDescriptor) -> MeasurementUnit:
    """
    Create an AliasMeasurementUnit from given descriptor.
    If descriptor is already an AliasMeasurementUnit, it returns the same object.

    This function does not serve as a constructor for AliasMeasurementUnit, rather
    it is intended to be used to convert an unknown unit descriptor to an
    AliasMeasurementUnit.

    Subclasses should implement aliased_generic_descriptor and alias_mapping
    methods.

    Raises `UnitDescriptorTypeError` if given descriptor cannot be translated
    to an AliasMeasurementUnit  instance.

    Examples:
        >>> class PressureUnit(AliasMeasurementUnit):
        ...     BAR = "bar"

        >>> bar = MeasurementUnit.from_descriptor(PressureUnit.BAR**(-1))
        >>> bar
        <PressureUnit: bar>
    """
    if isinstance(descriptor, Dimension) and isinstance(
        descriptor.unit, AliasMeasurementUnit
    ):
        return descriptor.unit
    if isinstance(descriptor, AliasMeasurementUnit):
        return descriptor
    raise UnitDescriptorTypeError(
        f"cannot create AliasMeasurementUnit from descriptor {descriptor}"
    )

CompositeDimension dataclass

A CompositeDimension represents a measurement unit that is composed from other measurement units.

Objects of this class can represent either multiplication or division between two Dimension objects.

Create objects by multiplying and diving Dimension or MeasurementUnit objects.

Examples:

>>> class LengthUnit(MeasurementUnit):
...     METER = "m"
>>> class AmountUnit(MeasurementUnit):
...     KILO_MOL = "kmol"
>>> molal_volume_dimension = (LengthUnit.METER**3) / AmountUnit.KILO_MOL
>>> molal_volume_dimension
<CompositeDimension: (m^3) / kmol>
Source code in src/property_utils/units/descriptors.py
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
@dataclass
class CompositeDimension:
    """
    A CompositeDimension represents a measurement unit that is composed from other
    measurement units.

    Objects of this class can represent either multiplication or division between two
    Dimension objects.

    Create objects by multiplying and diving Dimension or MeasurementUnit objects.

    Examples:
        >>> class LengthUnit(MeasurementUnit):
        ...     METER = "m"

        >>> class AmountUnit(MeasurementUnit):
        ...     KILO_MOL = "kmol"

        >>> molal_volume_dimension = (LengthUnit.METER**3) / AmountUnit.KILO_MOL
        >>> molal_volume_dimension
        <CompositeDimension: (m^3) / kmol>
    """

    Default = TypeVar("Default")  # default return type for `get` functions.

    numerator: List[Dimension] = field(default_factory=list)
    denominator: List[Dimension] = field(default_factory=list)

    @staticmethod
    def from_descriptor(descriptor: UnitDescriptor) -> "CompositeDimension":
        """
        Create a CompositeDimension from given descriptor.
        If descriptor is already a CompositeDimension, it returns the same object.

        This function does not serve as a constructor for CompositeDimension, rather it
        is intended to be used to convert an unknown unit descriptor to a
        CompositeDimension.

        Raises `UnitDescriptorTypeError` if given descriptor cannot be translated
        to a CompositeDimension instance.
        """
        if not isinstance(descriptor, CompositeDimension):
            raise UnitDescriptorTypeError(
                f"cannot create CompositeDimension from descriptor {descriptor}"
            )
        return descriptor

    def si(self) -> "CompositeDimension":
        """
        Returns this composite dimension in SI units.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     KELVIN = "K"
            ...     RANKINE = "R"
            ...     @classmethod
            ...     def si(cls): return cls.KELVIN

            >>> class LengthUnit(MeasurementUnit):
            ...     METER = "m"
            ...     FOOT = "ft"
            ...     @classmethod
            ...     def si(cls): return cls.METER

            >>> (TemperatureUnit.RANKINE / LengthUnit.FOOT**2).si()
            <CompositeDimension: K / (m^2)>
        """
        return CompositeDimension(
            [n.si() for n in self.numerator], [d.si() for d in self.denominator]
        )

    def isinstance(self, generic: GenericUnitDescriptor) -> bool:
        """
        Returns True if the CompositeDimension is an instance of the generic, False
        otherwise.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     CELCIUS = "C"

            >>> class LengthUnit(MeasurementUnit):
            ...     METER = "m"

            >>> (TemperatureUnit.CELCIUS / LengthUnit.METER).isinstance(TemperatureUnit / LengthUnit)
            True

            >>> (TemperatureUnit.CELCIUS * LengthUnit.METER).isinstance(TemperatureUnit**2)
            False
        """
        if not isinstance(generic, GenericCompositeDimension):
            return False

        return self.to_generic() == generic

    def isinstance_equivalent(self, generic: GenericUnitDescriptor) -> bool:
        """
        Returns True if the UnitDescriptor is an instance-equivalent of the generic,
        False otherwise.

        A unit descriptor is an instance-equivalent of a generic if the generic of the
        unit descriptor is equivalent to the generic.

        Equivalence between generics is checked with the `is_equivalent` method.

        Examples:
            >>> class MassUnit(MeasurementUnit):
            ...     KILO_GRAM = "kg"
            >>> class LengthUnit(MeasurementUnit):
            ...     METER = "m"
            >>> class TimeUnit(MeasurementUnit):
            ...     SECOND = "s"

            >>> class ForceUnit(AliasMeasurementUnit):
            ...     NEWTON = "N"
            ...     @classmethod
            ...     def aliased_generic_descriptor(cls):
            ...         return MassUnit * LengthUnit / (TimeUnit**2)

            >>> (MassUnit.KILO_GRAM * LengthUnit.METER / (TimeUnit.SECOND**2)).isinstance_equivalent(ForceUnit)
            True
        """
        return self.to_generic().is_equivalent(generic)

    def to_generic(self) -> GenericCompositeDimension:
        """
        Create a generic descriptor from this CompositeDimension.

        Examples:
            >>> class AmountUnit(MeasurementUnit):
            ...     MOL = "mol"

            >>> class MassUnit(MeasurementUnit):
            ...     KILO_GRAM = "kg"

            >>> (AmountUnit.MOL / MassUnit.KILO_GRAM).to_generic()
            <GenericCompositeDimension: AmountUnit / MassUnit>
        """
        return GenericCompositeDimension(
            numerator=[n.to_generic() for n in self.numerator],
            denominator=[d.to_generic() for d in self.denominator],
        )

    def get_numerator(
        self,
        generic: Union[MeasurementUnitType, GenericDimension],
        default: Optional[Default] = None,
    ) -> Union[Dimension, Optional[Default]]:
        """
        Get a dimension from the numerator. If the dimension is not found it returns
        the default.

        Examples:
            >>> class LengthUnit(MeasurementUnit):
            ...     METER = "m"

            >>> class TemperatureUnit(MeasurementUnit):
            ...     KELVIN = "K"

            >>> composite = TemperatureUnit.KELVIN / (LengthUnit.METER**3)
            >>> composite.get_numerator(TemperatureUnit)
            <Dimension: K>
            >>> composite.get_numerator(LengthUnit, "default")
            'default'
        """
        for n in self.numerator:
            if n.isinstance(generic):
                return n
        return default

    def get_denominator(
        self,
        generic: Union[MeasurementUnitType, GenericDimension],
        default: Optional[Default] = None,
    ) -> Union[Dimension, Optional[Default]]:
        """
        Get a dimension from the denominator. If the dimension is not found it returns
        the default.

        Examples:
            >>> class LengthUnit(MeasurementUnit):
            ...     METER = "m"

            >>> class TemperatureUnit(MeasurementUnit):
            ...     KELVIN = "K"

            >>> composite = TemperatureUnit.KELVIN / (LengthUnit.METER**3)
            >>> composite.get_denominator(LengthUnit**3)
            <Dimension: m^3>
            >>> composite.get_denominator(LengthUnit, "default")
            'default'
        """
        for d in self.denominator:
            if d.isinstance(generic):
                return d
        return default

    def simplify(self) -> None:
        """
        Simplify the composite by merging common dimensions.

        Examples:
            >>> class PressureUnit(AliasMeasurementUnit):
            ...     BAR = "bar"
            ...     PASCAL = "Pa"

            >>> class TemperatureUnit(MeasurementUnit):
            ...     KELVIN = "K"

            >>> class LengthUnit(MeasurementUnit):
            ...     METER = "m"

            >>> class TimeUnit(MeasurementUnit):
            ...     SECOND = "s"

            >>> composite = (PressureUnit.BAR**(-2)) / (TemperatureUnit.KELVIN**(-1))
            >>> composite
            <CompositeDimension: (bar^-2) / (K^-1)>
            >>> composite.simplify()
            >>> composite
            <CompositeDimension: K / (bar^2)>

            >>> composite = PressureUnit.PASCAL * LengthUnit.METER * PressureUnit.PASCAL /TimeUnit.SECOND
            >>> composite
            <CompositeDimension: Pa * Pa * m / s>
            >>> composite.simplify()
            >>> composite
            <CompositeDimension: (Pa^2) * m / s>
        """
        exponents: Dict[MeasurementUnit, float] = {}
        for n in self.numerator:
            if n.unit in exponents:
                exponents[n.unit] += n.power
            else:
                exponents[n.unit] = n.power

        for d in self.denominator:
            if d.unit in exponents:
                exponents[d.unit] -= d.power
            else:
                exponents[d.unit] = 0 - d.power

        numerator = []
        denominator = []
        for unit, exponent in exponents.items():
            if unit.is_non_dimensional():
                continue  # do not add non dimensional units to the simplified composite

            if exponent > 0:
                numerator.append(Dimension(unit) ** exponent)
            elif exponent < 0:
                denominator.append(Dimension(unit) ** abs(exponent))

        self.numerator = numerator
        self.denominator = denominator

    def simplified(self) -> "CompositeDimension":
        """
        Returns a simplified version of this composite dimension as a new object.

        Examples:
            >>> class PressureUnit(AliasMeasurementUnit):
            ...     BAR = "bar"
            ...     PASCAL = "Pa"

            >>> class TemperatureUnit(MeasurementUnit):
            ...     KELVIN = "K"

            >>> class LengthUnit(MeasurementUnit):
            ...     METER = "m"

            >>> class TimeUnit(MeasurementUnit):
            ...     SECOND = "s"

            >>> composite = (PressureUnit.BAR**(-2)) / (TemperatureUnit.KELVIN**(-1))
            >>> composite
            <CompositeDimension: (bar^-2) / (K^-1)>
            >>> composite.simplified()
            <CompositeDimension: K / (bar^2)>

            >>> composite = PressureUnit.PASCAL * LengthUnit.METER * PressureUnit.PASCAL /TimeUnit.SECOND
            >>> composite
            <CompositeDimension: Pa * Pa * m / s>
            >>> composite.simplified()
            <CompositeDimension: (Pa^2) * m / s>
        """
        copy = replace(self)
        copy.simplify()
        return copy

    def inverse(self) -> "CompositeDimension":
        """
        Create a composite with inverse units.

        Examples:
            >>> class LengthUnit(MeasurementUnit):
            ...     METER = "m"
            >>> class TimeUnit(MeasurementUnit):
            ...     SECOND = "s"

            >>> (LengthUnit.METER / TimeUnit.SECOND).inverse()
            <CompositeDimension: s / m>
        """
        return CompositeDimension(self._denominator_copy(), self._numerator_copy())

    def has_no_units(self) -> bool:
        """
        Returns True if the composite dimension does not have any units, False otherwise.

        Examples:
            >>> class LengthUnit(MeasurementUnit):
            ...     METER = "m"

            >>> CompositeDimension().has_no_units()
            True
            >>> CompositeDimension([LengthUnit.METER]).has_no_units()
            False
        """
        return len(self.denominator) == 0 and len(self.numerator) == 0

    def _numerator_copy(self) -> List[Dimension]:
        return [replace(n) for n in self.numerator]

    def _denominator_copy(self) -> List[Dimension]:
        return [replace(d) for d in self.denominator]

    def __mul__(self, descriptor: "UnitDescriptor") -> "CompositeDimension":
        """
        Defines multiplication between CompositeDimension(s) and other unit descriptors.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     CELCIUS = "C"
            >>> class TimeUnit(MeasurementUnit):
            ...     SECOND = "s"
            >>> class LengthUnit(MeasurementUnit):
            ...     CENTI_METER = "cm"
            >>> (TemperatureUnit.CELCIUS / LengthUnit.CENTI_METER) * TimeUnit.SECOND
            <CompositeDimension: C * s / cm>
        """
        numerator = self.numerator.copy()
        denominator = self.denominator.copy()
        if isinstance(descriptor, CompositeDimension):
            numerator.extend(descriptor.numerator)
            denominator.extend(descriptor.denominator)
            return CompositeDimension(numerator=numerator, denominator=denominator)
        if isinstance(descriptor, Dimension):
            numerator.append(descriptor)
            return CompositeDimension(numerator=numerator, denominator=denominator)
        if isinstance(descriptor, MeasurementUnit):
            numerator.append(Dimension(descriptor))
            return CompositeDimension(numerator=numerator, denominator=denominator)
        raise DescriptorBinaryOperationError(
            f"cannot multiply {self} with {descriptor}. "
        )

    def __truediv__(self, descriptor: "UnitDescriptor") -> "CompositeDimension":
        """
        Defines multiplication between CompositeDimension(s) and other unit descriptors.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     CELCIUS = "C"
            >>> class TimeUnit(MeasurementUnit):
            ...     SECOND = "s"
            >>> class LengthUnit(MeasurementUnit):
            ...     CENTI_METER = "cm"
            >>> (TemperatureUnit.CELCIUS * LengthUnit.CENTI_METER) / TimeUnit.SECOND
            <CompositeDimension: C * cm / s>
        """
        numerator = self.numerator.copy()
        denominator = self.denominator.copy()
        if isinstance(descriptor, CompositeDimension):
            numerator.extend(descriptor.denominator)
            denominator.extend(descriptor.numerator)
            return CompositeDimension(numerator=numerator, denominator=denominator)
        if isinstance(descriptor, Dimension):
            denominator.append(descriptor)
            return CompositeDimension(numerator=numerator, denominator=denominator)
        if isinstance(descriptor, MeasurementUnit):
            denominator.append(Dimension(descriptor))
            return CompositeDimension(numerator=numerator, denominator=denominator)
        raise DescriptorBinaryOperationError(
            f"cannot divide {self} with {descriptor}. "
        )

    def __pow__(self, power: float) -> "CompositeDimension":
        """
        Defines exponentiation for CompositeDimension(s).

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     CELCIUS = "C"
            >>> class TimeUnit(MeasurementUnit):
            ...     HOUR = "hr"

            >>> (TemperatureUnit.CELCIUS / TimeUnit.HOUR)**2
            <CompositeDimension: (C^2) / (hr^2)>
        """
        if not isinstance(power, (float, int)):
            raise DescriptorExponentError(
                f"invalid exponent: {{ value: {power}, type: {type(power)} }};"
                " expected float or int. "
            )
        numerator = [n**power for n in self._numerator_copy()]
        denominator = [d**power for d in self._denominator_copy()]
        return CompositeDimension(numerator, denominator)

    def __eq__(self, dimension) -> bool:
        """
        Defines equality for CompositeDimension(s).

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     CELCIUS = "C"
            >>> class TimeUnit(MeasurementUnit):
            ...     HOUR = "hr"
            >>> (TemperatureUnit.CELCIUS / TimeUnit.HOUR) != (TimeUnit.HOUR / TemperatureUnit.CELCIUS)
            True
        """
        if not isinstance(dimension, CompositeDimension):
            return False
        return Counter(self.numerator) == Counter(dimension.numerator) and (
            Counter(self.denominator) == Counter(dimension.denominator)
        )

    def __hash__(self) -> int:
        return hash(str(self))

    def __str__(self):
        numerators = " * ".join(sorted([str(n) for n in self.numerator]))
        denominators = " / ".join(sorted([str(d) for d in self.denominator]))
        if len(denominators) > 0:
            denominators = " / " + denominators
        return numerators + denominators

    def __repr__(self) -> str:
        numerators = " * ".join(sorted([str(n) for n in self.numerator]))
        denominators = " / ".join(sorted([str(d) for d in self.denominator]))
        if len(denominators) > 0:
            denominators = " / " + denominators
        return f"<CompositeDimension: {numerators + denominators}>"

__eq__(dimension)

Defines equality for CompositeDimension(s).

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     CELCIUS = "C"
>>> class TimeUnit(MeasurementUnit):
...     HOUR = "hr"
>>> (TemperatureUnit.CELCIUS / TimeUnit.HOUR) != (TimeUnit.HOUR / TemperatureUnit.CELCIUS)
True
Source code in src/property_utils/units/descriptors.py
def __eq__(self, dimension) -> bool:
    """
    Defines equality for CompositeDimension(s).

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     CELCIUS = "C"
        >>> class TimeUnit(MeasurementUnit):
        ...     HOUR = "hr"
        >>> (TemperatureUnit.CELCIUS / TimeUnit.HOUR) != (TimeUnit.HOUR / TemperatureUnit.CELCIUS)
        True
    """
    if not isinstance(dimension, CompositeDimension):
        return False
    return Counter(self.numerator) == Counter(dimension.numerator) and (
        Counter(self.denominator) == Counter(dimension.denominator)
    )

__mul__(descriptor)

Defines multiplication between CompositeDimension(s) and other unit descriptors.

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     CELCIUS = "C"
>>> class TimeUnit(MeasurementUnit):
...     SECOND = "s"
>>> class LengthUnit(MeasurementUnit):
...     CENTI_METER = "cm"
>>> (TemperatureUnit.CELCIUS / LengthUnit.CENTI_METER) * TimeUnit.SECOND
<CompositeDimension: C * s / cm>
Source code in src/property_utils/units/descriptors.py
def __mul__(self, descriptor: "UnitDescriptor") -> "CompositeDimension":
    """
    Defines multiplication between CompositeDimension(s) and other unit descriptors.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     CELCIUS = "C"
        >>> class TimeUnit(MeasurementUnit):
        ...     SECOND = "s"
        >>> class LengthUnit(MeasurementUnit):
        ...     CENTI_METER = "cm"
        >>> (TemperatureUnit.CELCIUS / LengthUnit.CENTI_METER) * TimeUnit.SECOND
        <CompositeDimension: C * s / cm>
    """
    numerator = self.numerator.copy()
    denominator = self.denominator.copy()
    if isinstance(descriptor, CompositeDimension):
        numerator.extend(descriptor.numerator)
        denominator.extend(descriptor.denominator)
        return CompositeDimension(numerator=numerator, denominator=denominator)
    if isinstance(descriptor, Dimension):
        numerator.append(descriptor)
        return CompositeDimension(numerator=numerator, denominator=denominator)
    if isinstance(descriptor, MeasurementUnit):
        numerator.append(Dimension(descriptor))
        return CompositeDimension(numerator=numerator, denominator=denominator)
    raise DescriptorBinaryOperationError(
        f"cannot multiply {self} with {descriptor}. "
    )

__pow__(power)

Defines exponentiation for CompositeDimension(s).

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     CELCIUS = "C"
>>> class TimeUnit(MeasurementUnit):
...     HOUR = "hr"
>>> (TemperatureUnit.CELCIUS / TimeUnit.HOUR)**2
<CompositeDimension: (C^2) / (hr^2)>
Source code in src/property_utils/units/descriptors.py
def __pow__(self, power: float) -> "CompositeDimension":
    """
    Defines exponentiation for CompositeDimension(s).

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     CELCIUS = "C"
        >>> class TimeUnit(MeasurementUnit):
        ...     HOUR = "hr"

        >>> (TemperatureUnit.CELCIUS / TimeUnit.HOUR)**2
        <CompositeDimension: (C^2) / (hr^2)>
    """
    if not isinstance(power, (float, int)):
        raise DescriptorExponentError(
            f"invalid exponent: {{ value: {power}, type: {type(power)} }};"
            " expected float or int. "
        )
    numerator = [n**power for n in self._numerator_copy()]
    denominator = [d**power for d in self._denominator_copy()]
    return CompositeDimension(numerator, denominator)

__truediv__(descriptor)

Defines multiplication between CompositeDimension(s) and other unit descriptors.

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     CELCIUS = "C"
>>> class TimeUnit(MeasurementUnit):
...     SECOND = "s"
>>> class LengthUnit(MeasurementUnit):
...     CENTI_METER = "cm"
>>> (TemperatureUnit.CELCIUS * LengthUnit.CENTI_METER) / TimeUnit.SECOND
<CompositeDimension: C * cm / s>
Source code in src/property_utils/units/descriptors.py
def __truediv__(self, descriptor: "UnitDescriptor") -> "CompositeDimension":
    """
    Defines multiplication between CompositeDimension(s) and other unit descriptors.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     CELCIUS = "C"
        >>> class TimeUnit(MeasurementUnit):
        ...     SECOND = "s"
        >>> class LengthUnit(MeasurementUnit):
        ...     CENTI_METER = "cm"
        >>> (TemperatureUnit.CELCIUS * LengthUnit.CENTI_METER) / TimeUnit.SECOND
        <CompositeDimension: C * cm / s>
    """
    numerator = self.numerator.copy()
    denominator = self.denominator.copy()
    if isinstance(descriptor, CompositeDimension):
        numerator.extend(descriptor.denominator)
        denominator.extend(descriptor.numerator)
        return CompositeDimension(numerator=numerator, denominator=denominator)
    if isinstance(descriptor, Dimension):
        denominator.append(descriptor)
        return CompositeDimension(numerator=numerator, denominator=denominator)
    if isinstance(descriptor, MeasurementUnit):
        denominator.append(Dimension(descriptor))
        return CompositeDimension(numerator=numerator, denominator=denominator)
    raise DescriptorBinaryOperationError(
        f"cannot divide {self} with {descriptor}. "
    )

from_descriptor(descriptor) staticmethod

Create a CompositeDimension from given descriptor. If descriptor is already a CompositeDimension, it returns the same object.

This function does not serve as a constructor for CompositeDimension, rather it is intended to be used to convert an unknown unit descriptor to a CompositeDimension.

Raises UnitDescriptorTypeError if given descriptor cannot be translated to a CompositeDimension instance.

Source code in src/property_utils/units/descriptors.py
@staticmethod
def from_descriptor(descriptor: UnitDescriptor) -> "CompositeDimension":
    """
    Create a CompositeDimension from given descriptor.
    If descriptor is already a CompositeDimension, it returns the same object.

    This function does not serve as a constructor for CompositeDimension, rather it
    is intended to be used to convert an unknown unit descriptor to a
    CompositeDimension.

    Raises `UnitDescriptorTypeError` if given descriptor cannot be translated
    to a CompositeDimension instance.
    """
    if not isinstance(descriptor, CompositeDimension):
        raise UnitDescriptorTypeError(
            f"cannot create CompositeDimension from descriptor {descriptor}"
        )
    return descriptor

get_denominator(generic, default=None)

Get a dimension from the denominator. If the dimension is not found it returns the default.

Examples:

>>> class LengthUnit(MeasurementUnit):
...     METER = "m"
>>> class TemperatureUnit(MeasurementUnit):
...     KELVIN = "K"
>>> composite = TemperatureUnit.KELVIN / (LengthUnit.METER**3)
>>> composite.get_denominator(LengthUnit**3)
<Dimension: m^3>
>>> composite.get_denominator(LengthUnit, "default")
'default'
Source code in src/property_utils/units/descriptors.py
def get_denominator(
    self,
    generic: Union[MeasurementUnitType, GenericDimension],
    default: Optional[Default] = None,
) -> Union[Dimension, Optional[Default]]:
    """
    Get a dimension from the denominator. If the dimension is not found it returns
    the default.

    Examples:
        >>> class LengthUnit(MeasurementUnit):
        ...     METER = "m"

        >>> class TemperatureUnit(MeasurementUnit):
        ...     KELVIN = "K"

        >>> composite = TemperatureUnit.KELVIN / (LengthUnit.METER**3)
        >>> composite.get_denominator(LengthUnit**3)
        <Dimension: m^3>
        >>> composite.get_denominator(LengthUnit, "default")
        'default'
    """
    for d in self.denominator:
        if d.isinstance(generic):
            return d
    return default

get_numerator(generic, default=None)

Get a dimension from the numerator. If the dimension is not found it returns the default.

Examples:

>>> class LengthUnit(MeasurementUnit):
...     METER = "m"
>>> class TemperatureUnit(MeasurementUnit):
...     KELVIN = "K"
>>> composite = TemperatureUnit.KELVIN / (LengthUnit.METER**3)
>>> composite.get_numerator(TemperatureUnit)
<Dimension: K>
>>> composite.get_numerator(LengthUnit, "default")
'default'
Source code in src/property_utils/units/descriptors.py
def get_numerator(
    self,
    generic: Union[MeasurementUnitType, GenericDimension],
    default: Optional[Default] = None,
) -> Union[Dimension, Optional[Default]]:
    """
    Get a dimension from the numerator. If the dimension is not found it returns
    the default.

    Examples:
        >>> class LengthUnit(MeasurementUnit):
        ...     METER = "m"

        >>> class TemperatureUnit(MeasurementUnit):
        ...     KELVIN = "K"

        >>> composite = TemperatureUnit.KELVIN / (LengthUnit.METER**3)
        >>> composite.get_numerator(TemperatureUnit)
        <Dimension: K>
        >>> composite.get_numerator(LengthUnit, "default")
        'default'
    """
    for n in self.numerator:
        if n.isinstance(generic):
            return n
    return default

has_no_units()

Returns True if the composite dimension does not have any units, False otherwise.

Examples:

>>> class LengthUnit(MeasurementUnit):
...     METER = "m"
>>> CompositeDimension().has_no_units()
True
>>> CompositeDimension([LengthUnit.METER]).has_no_units()
False
Source code in src/property_utils/units/descriptors.py
def has_no_units(self) -> bool:
    """
    Returns True if the composite dimension does not have any units, False otherwise.

    Examples:
        >>> class LengthUnit(MeasurementUnit):
        ...     METER = "m"

        >>> CompositeDimension().has_no_units()
        True
        >>> CompositeDimension([LengthUnit.METER]).has_no_units()
        False
    """
    return len(self.denominator) == 0 and len(self.numerator) == 0

inverse()

Create a composite with inverse units.

Examples:

>>> class LengthUnit(MeasurementUnit):
...     METER = "m"
>>> class TimeUnit(MeasurementUnit):
...     SECOND = "s"
>>> (LengthUnit.METER / TimeUnit.SECOND).inverse()
<CompositeDimension: s / m>
Source code in src/property_utils/units/descriptors.py
def inverse(self) -> "CompositeDimension":
    """
    Create a composite with inverse units.

    Examples:
        >>> class LengthUnit(MeasurementUnit):
        ...     METER = "m"
        >>> class TimeUnit(MeasurementUnit):
        ...     SECOND = "s"

        >>> (LengthUnit.METER / TimeUnit.SECOND).inverse()
        <CompositeDimension: s / m>
    """
    return CompositeDimension(self._denominator_copy(), self._numerator_copy())

isinstance(generic)

Returns True if the CompositeDimension is an instance of the generic, False otherwise.

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     CELCIUS = "C"
>>> class LengthUnit(MeasurementUnit):
...     METER = "m"
>>> (TemperatureUnit.CELCIUS / LengthUnit.METER).isinstance(TemperatureUnit / LengthUnit)
True
>>> (TemperatureUnit.CELCIUS * LengthUnit.METER).isinstance(TemperatureUnit**2)
False
Source code in src/property_utils/units/descriptors.py
def isinstance(self, generic: GenericUnitDescriptor) -> bool:
    """
    Returns True if the CompositeDimension is an instance of the generic, False
    otherwise.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     CELCIUS = "C"

        >>> class LengthUnit(MeasurementUnit):
        ...     METER = "m"

        >>> (TemperatureUnit.CELCIUS / LengthUnit.METER).isinstance(TemperatureUnit / LengthUnit)
        True

        >>> (TemperatureUnit.CELCIUS * LengthUnit.METER).isinstance(TemperatureUnit**2)
        False
    """
    if not isinstance(generic, GenericCompositeDimension):
        return False

    return self.to_generic() == generic

isinstance_equivalent(generic)

Returns True if the UnitDescriptor is an instance-equivalent of the generic, False otherwise.

A unit descriptor is an instance-equivalent of a generic if the generic of the unit descriptor is equivalent to the generic.

Equivalence between generics is checked with the is_equivalent method.

Examples:

>>> class MassUnit(MeasurementUnit):
...     KILO_GRAM = "kg"
>>> class LengthUnit(MeasurementUnit):
...     METER = "m"
>>> class TimeUnit(MeasurementUnit):
...     SECOND = "s"
>>> class ForceUnit(AliasMeasurementUnit):
...     NEWTON = "N"
...     @classmethod
...     def aliased_generic_descriptor(cls):
...         return MassUnit * LengthUnit / (TimeUnit**2)
>>> (MassUnit.KILO_GRAM * LengthUnit.METER / (TimeUnit.SECOND**2)).isinstance_equivalent(ForceUnit)
True
Source code in src/property_utils/units/descriptors.py
def isinstance_equivalent(self, generic: GenericUnitDescriptor) -> bool:
    """
    Returns True if the UnitDescriptor is an instance-equivalent of the generic,
    False otherwise.

    A unit descriptor is an instance-equivalent of a generic if the generic of the
    unit descriptor is equivalent to the generic.

    Equivalence between generics is checked with the `is_equivalent` method.

    Examples:
        >>> class MassUnit(MeasurementUnit):
        ...     KILO_GRAM = "kg"
        >>> class LengthUnit(MeasurementUnit):
        ...     METER = "m"
        >>> class TimeUnit(MeasurementUnit):
        ...     SECOND = "s"

        >>> class ForceUnit(AliasMeasurementUnit):
        ...     NEWTON = "N"
        ...     @classmethod
        ...     def aliased_generic_descriptor(cls):
        ...         return MassUnit * LengthUnit / (TimeUnit**2)

        >>> (MassUnit.KILO_GRAM * LengthUnit.METER / (TimeUnit.SECOND**2)).isinstance_equivalent(ForceUnit)
        True
    """
    return self.to_generic().is_equivalent(generic)

si()

Returns this composite dimension in SI units.

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     KELVIN = "K"
...     RANKINE = "R"
...     @classmethod
...     def si(cls): return cls.KELVIN
>>> class LengthUnit(MeasurementUnit):
...     METER = "m"
...     FOOT = "ft"
...     @classmethod
...     def si(cls): return cls.METER
>>> (TemperatureUnit.RANKINE / LengthUnit.FOOT**2).si()
<CompositeDimension: K / (m^2)>
Source code in src/property_utils/units/descriptors.py
def si(self) -> "CompositeDimension":
    """
    Returns this composite dimension in SI units.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     KELVIN = "K"
        ...     RANKINE = "R"
        ...     @classmethod
        ...     def si(cls): return cls.KELVIN

        >>> class LengthUnit(MeasurementUnit):
        ...     METER = "m"
        ...     FOOT = "ft"
        ...     @classmethod
        ...     def si(cls): return cls.METER

        >>> (TemperatureUnit.RANKINE / LengthUnit.FOOT**2).si()
        <CompositeDimension: K / (m^2)>
    """
    return CompositeDimension(
        [n.si() for n in self.numerator], [d.si() for d in self.denominator]
    )

simplified()

Returns a simplified version of this composite dimension as a new object.

Examples:

>>> class PressureUnit(AliasMeasurementUnit):
...     BAR = "bar"
...     PASCAL = "Pa"
>>> class TemperatureUnit(MeasurementUnit):
...     KELVIN = "K"
>>> class LengthUnit(MeasurementUnit):
...     METER = "m"
>>> class TimeUnit(MeasurementUnit):
...     SECOND = "s"
>>> composite = (PressureUnit.BAR**(-2)) / (TemperatureUnit.KELVIN**(-1))
>>> composite
<CompositeDimension: (bar^-2) / (K^-1)>
>>> composite.simplified()
<CompositeDimension: K / (bar^2)>
>>> composite = PressureUnit.PASCAL * LengthUnit.METER * PressureUnit.PASCAL /TimeUnit.SECOND
>>> composite
<CompositeDimension: Pa * Pa * m / s>
>>> composite.simplified()
<CompositeDimension: (Pa^2) * m / s>
Source code in src/property_utils/units/descriptors.py
def simplified(self) -> "CompositeDimension":
    """
    Returns a simplified version of this composite dimension as a new object.

    Examples:
        >>> class PressureUnit(AliasMeasurementUnit):
        ...     BAR = "bar"
        ...     PASCAL = "Pa"

        >>> class TemperatureUnit(MeasurementUnit):
        ...     KELVIN = "K"

        >>> class LengthUnit(MeasurementUnit):
        ...     METER = "m"

        >>> class TimeUnit(MeasurementUnit):
        ...     SECOND = "s"

        >>> composite = (PressureUnit.BAR**(-2)) / (TemperatureUnit.KELVIN**(-1))
        >>> composite
        <CompositeDimension: (bar^-2) / (K^-1)>
        >>> composite.simplified()
        <CompositeDimension: K / (bar^2)>

        >>> composite = PressureUnit.PASCAL * LengthUnit.METER * PressureUnit.PASCAL /TimeUnit.SECOND
        >>> composite
        <CompositeDimension: Pa * Pa * m / s>
        >>> composite.simplified()
        <CompositeDimension: (Pa^2) * m / s>
    """
    copy = replace(self)
    copy.simplify()
    return copy

simplify()

Simplify the composite by merging common dimensions.

Examples:

>>> class PressureUnit(AliasMeasurementUnit):
...     BAR = "bar"
...     PASCAL = "Pa"
>>> class TemperatureUnit(MeasurementUnit):
...     KELVIN = "K"
>>> class LengthUnit(MeasurementUnit):
...     METER = "m"
>>> class TimeUnit(MeasurementUnit):
...     SECOND = "s"
>>> composite = (PressureUnit.BAR**(-2)) / (TemperatureUnit.KELVIN**(-1))
>>> composite
<CompositeDimension: (bar^-2) / (K^-1)>
>>> composite.simplify()
>>> composite
<CompositeDimension: K / (bar^2)>
>>> composite = PressureUnit.PASCAL * LengthUnit.METER * PressureUnit.PASCAL /TimeUnit.SECOND
>>> composite
<CompositeDimension: Pa * Pa * m / s>
>>> composite.simplify()
>>> composite
<CompositeDimension: (Pa^2) * m / s>
Source code in src/property_utils/units/descriptors.py
def simplify(self) -> None:
    """
    Simplify the composite by merging common dimensions.

    Examples:
        >>> class PressureUnit(AliasMeasurementUnit):
        ...     BAR = "bar"
        ...     PASCAL = "Pa"

        >>> class TemperatureUnit(MeasurementUnit):
        ...     KELVIN = "K"

        >>> class LengthUnit(MeasurementUnit):
        ...     METER = "m"

        >>> class TimeUnit(MeasurementUnit):
        ...     SECOND = "s"

        >>> composite = (PressureUnit.BAR**(-2)) / (TemperatureUnit.KELVIN**(-1))
        >>> composite
        <CompositeDimension: (bar^-2) / (K^-1)>
        >>> composite.simplify()
        >>> composite
        <CompositeDimension: K / (bar^2)>

        >>> composite = PressureUnit.PASCAL * LengthUnit.METER * PressureUnit.PASCAL /TimeUnit.SECOND
        >>> composite
        <CompositeDimension: Pa * Pa * m / s>
        >>> composite.simplify()
        >>> composite
        <CompositeDimension: (Pa^2) * m / s>
    """
    exponents: Dict[MeasurementUnit, float] = {}
    for n in self.numerator:
        if n.unit in exponents:
            exponents[n.unit] += n.power
        else:
            exponents[n.unit] = n.power

    for d in self.denominator:
        if d.unit in exponents:
            exponents[d.unit] -= d.power
        else:
            exponents[d.unit] = 0 - d.power

    numerator = []
    denominator = []
    for unit, exponent in exponents.items():
        if unit.is_non_dimensional():
            continue  # do not add non dimensional units to the simplified composite

        if exponent > 0:
            numerator.append(Dimension(unit) ** exponent)
        elif exponent < 0:
            denominator.append(Dimension(unit) ** abs(exponent))

    self.numerator = numerator
    self.denominator = denominator

to_generic()

Create a generic descriptor from this CompositeDimension.

Examples:

>>> class AmountUnit(MeasurementUnit):
...     MOL = "mol"
>>> class MassUnit(MeasurementUnit):
...     KILO_GRAM = "kg"
>>> (AmountUnit.MOL / MassUnit.KILO_GRAM).to_generic()
<GenericCompositeDimension: AmountUnit / MassUnit>
Source code in src/property_utils/units/descriptors.py
def to_generic(self) -> GenericCompositeDimension:
    """
    Create a generic descriptor from this CompositeDimension.

    Examples:
        >>> class AmountUnit(MeasurementUnit):
        ...     MOL = "mol"

        >>> class MassUnit(MeasurementUnit):
        ...     KILO_GRAM = "kg"

        >>> (AmountUnit.MOL / MassUnit.KILO_GRAM).to_generic()
        <GenericCompositeDimension: AmountUnit / MassUnit>
    """
    return GenericCompositeDimension(
        numerator=[n.to_generic() for n in self.numerator],
        denominator=[d.to_generic() for d in self.denominator],
    )

Dimension dataclass

A Dimension is a wrapper around MeasurementUnit.

Objects of this class can represent either a simple MeasurementUnit or a MeasurementUnit to some power.

Examples:

>>> class TimeUnit(MeasurementUnit):
...     SECOND = "s"
>>> TimeUnit.SECOND**2
<Dimension: s^2>
Source code in src/property_utils/units/descriptors.py
@dataclass
class Dimension:
    """
    A Dimension is a wrapper around MeasurementUnit.

    Objects of this class can represent either a simple MeasurementUnit or a
    MeasurementUnit to some power.

    Examples:
        >>> class TimeUnit(MeasurementUnit):
        ...     SECOND = "s"

        >>> TimeUnit.SECOND**2
        <Dimension: s^2>
    """

    unit: MeasurementUnit
    power: float = 1

    def __init__(self, unit: MeasurementUnit, power: float = 1) -> None:
        if not isinstance(power, (float, int)):
            raise DescriptorExponentError(
                f"invalid exponent: {{ value: {power}, type: {type(power)} }};"
                " expected float or int. "
            )
        self.unit = unit
        self.power = power

    @staticmethod
    def from_descriptor(descriptor: UnitDescriptor) -> "Dimension":
        """
        Create a Dimension from given descriptor.
        If descriptor is already a Dimension, it returns the same object.

        This function does not serve as a constructor for Dimension, rather it
        is intended to be used to convert an unknown unit descriptor to a Dimension.

        Raises `UnitDescriptorTypeError` if given descriptor cannot be translated
        to a Dimension instance.
        """
        if isinstance(descriptor, Dimension):
            return descriptor
        if isinstance(descriptor, MeasurementUnit):
            return Dimension(descriptor)
        raise UnitDescriptorTypeError(
            f"cannot create Dimension from descriptor: {descriptor}"
        )

    def si(self) -> "Dimension":
        """
        Returns this dimension in SI units.

        Examples:
            >>> class LengthUnit(MeasurementUnit):
            ...     METER = "m"
            ...     FOOT = "ft"
            ...     @classmethod
            ...     def si(cls): return cls.METER

            >>> (LengthUnit.FOOT**2).si()
            <Dimension: m^2>
        """
        return Dimension(self.unit.si(), self.power)

    def isinstance(self, generic: GenericUnitDescriptor) -> bool:
        """
        Returns True if the Dimension is an instance of the generic, False
        otherwise.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     CELCIUS = "C"

            >>> Dimension(TemperatureUnit.CELCIUS).isinstance(TemperatureUnit)
            True

            >>> Dimension(TemperatureUnit.CELCIUS).isinstance(TemperatureUnit**2)
            False
        """
        if isinstance(generic, MeasurementUnitType):
            generic = GenericDimension(generic)
        if not isinstance(generic, GenericDimension):
            return False

        if isinstance(self.unit, generic.unit_type) and self.power == generic.power:
            return True

        return False

    def isinstance_equivalent(self, generic: GenericUnitDescriptor) -> bool:
        """
        Returns True if the UnitDescriptor is an instance-equivalent of the generic,
        False otherwise.

        A unit descriptor is an instance-equivalent of a generic if the generic of the
        unit descriptor is equivalent to the generic.

        Equivalence between generics is checked with the `is_equivalent` method.

        Examples:
            >>> class LengthUnit(MeasurementUnit):
            ...     METER = "m"
            >>> class VolumeUnit(AliasMeasurementUnit):
            ...     @classmethod
            ...     def aliased_generic_descriptor(cls): return LengthUnit**3

            >>> (LengthUnit.METER**3).isinstance_equivalent(VolumeUnit)
            True
        """
        return self.to_generic().is_equivalent(generic)

    def to_generic(self) -> GenericDimension:
        """
        Create a generic descriptor from this Dimension.

        Examples:
            >>> class AmountUnit(MeasurementUnit):
            ...     MOL = "mol"

            >>> (AmountUnit.MOL**3.56).to_generic()
            <GenericDimension: AmountUnit^3.56>
        """
        return GenericDimension(type(self.unit), self.power)

    def inverse(self) -> "CompositeDimension":
        """
        Create a composite with inverse units.

        Examples:
            >>> class LengthUnit(MeasurementUnit):
            ...     METER = "m"
            >>> (LengthUnit.METER**2).inverse()
            <CompositeDimension:  / (m^2)>
        """
        return CompositeDimension([], [replace(self)])

    def _isinstance_aliased(self, generic: GenericUnitDescriptor) -> bool:
        """
        Returns True if the generic is the aliased unit descriptor of this Dimension,
        False otherwise.

        Only applicable if this Dimension's unit is of type AliasMeasurementUnit.
        """
        return (
            isinstance(self.unit, AliasMeasurementUnit)
            and (self.unit.aliased_generic_descriptor() ** self.power) == generic
        )

    def _isinstance_alias(self, generic: GenericUnitDescriptor) -> bool:
        """
        Returns True if this Dimension's unit is an instance of the aliased unit
        descriptor of the generic, False otherwise.

        Only applicable if generic is an AliasMeasurementUnit.
        """
        if isinstance(generic, MeasurementUnitType):
            generic = GenericDimension(generic)

        if not isinstance(generic, GenericDimension):
            return False

        if not issubclass(generic.unit_type, AliasMeasurementUnit):
            return False

        if (
            generic.unit_type.aliased_generic_descriptor() ** generic.power
            == self.to_generic()
        ):
            return True

        return False

    def __mul__(self, descriptor: "UnitDescriptor") -> "CompositeDimension":
        """
        Defines multiplication between Dimension(s) and other unit descriptors.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     CELCIUS = "C"
            >>> class TimeUnit(MeasurementUnit):
            ...     MINUTE = "min"
            >>> (TemperatureUnit.CELCIUS**3) * TimeUnit.MINUTE
            <CompositeDimension: (C^3) * min>
        """
        if isinstance(descriptor, CompositeDimension):
            numerator = descriptor.numerator.copy()
            denominator = descriptor.denominator.copy()
            numerator.append(self)
            return CompositeDimension(numerator=numerator, denominator=denominator)
        if isinstance(descriptor, Dimension):
            return CompositeDimension(numerator=[self, descriptor])
        if isinstance(descriptor, MeasurementUnit):
            return CompositeDimension(numerator=[self, Dimension(descriptor)])
        raise DescriptorBinaryOperationError(
            f"cannot multiply {self} with {descriptor}. "
        )

    def __truediv__(self, descriptor: "UnitDescriptor") -> "CompositeDimension":
        """
        Defines division between Dimension(s) and other unit descriptors.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     CELCIUS = "C"
            >>> class TimeUnit(MeasurementUnit):
            ...     MINUTE = "min"
            >>> (TemperatureUnit.CELCIUS**3) / TimeUnit.MINUTE
            <CompositeDimension: (C^3) / min>
        """
        if isinstance(descriptor, CompositeDimension):
            numerator = descriptor.denominator.copy()
            denominator = descriptor.numerator.copy()
            numerator.append(self)
            return CompositeDimension(numerator=numerator, denominator=denominator)
        if isinstance(descriptor, Dimension):
            return CompositeDimension(numerator=[self], denominator=[descriptor])
        if isinstance(descriptor, MeasurementUnit):
            return CompositeDimension(
                numerator=[self], denominator=[Dimension(descriptor)]
            )
        raise DescriptorBinaryOperationError(
            f"cannot divide {self} with  {descriptor}. "
        )

    def __pow__(self, power: float) -> "Dimension":
        """
        Defines exponentiation for Dimension(s).

        Examples:
            >>> class TimeUnit(MeasurementUnit):
            ...     SECOND = "s"
            >>> (TimeUnit.SECOND**2)**3
            <Dimension: s^6>
        """
        if not isinstance(power, (float, int)):
            raise DescriptorExponentError(
                f"invalid exponent: {{ value: {power}, type: {type(power)} }};"
                " expected float or int. "
            )
        if self.unit.is_non_dimensional():
            self.power = 1
        else:
            self.power *= power
        return self

    def __eq__(self, dimension) -> bool:
        """
        Defines equality for Dimension(s).

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     KELVIN = "K"
            >>> (TemperatureUnit.KELVIN**2) != TemperatureUnit.KELVIN
            True
        """
        if not isinstance(dimension, Dimension):
            return False
        return self.unit == dimension.unit and self.power == dimension.power

    def __hash__(self) -> int:
        return hash(str(self))

    def __repr__(self) -> str:
        if self.power != 1:
            return f"<Dimension: {self.unit.value}^{self.power}>"
        return f"<Dimension: {self.unit.value}>"

    def __str__(self) -> str:
        s = self.unit.value
        if self.power != 1:
            return f"({s}^{self.power})"
        return s

__eq__(dimension)

Defines equality for Dimension(s).

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     KELVIN = "K"
>>> (TemperatureUnit.KELVIN**2) != TemperatureUnit.KELVIN
True
Source code in src/property_utils/units/descriptors.py
def __eq__(self, dimension) -> bool:
    """
    Defines equality for Dimension(s).

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     KELVIN = "K"
        >>> (TemperatureUnit.KELVIN**2) != TemperatureUnit.KELVIN
        True
    """
    if not isinstance(dimension, Dimension):
        return False
    return self.unit == dimension.unit and self.power == dimension.power

__mul__(descriptor)

Defines multiplication between Dimension(s) and other unit descriptors.

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     CELCIUS = "C"
>>> class TimeUnit(MeasurementUnit):
...     MINUTE = "min"
>>> (TemperatureUnit.CELCIUS**3) * TimeUnit.MINUTE
<CompositeDimension: (C^3) * min>
Source code in src/property_utils/units/descriptors.py
def __mul__(self, descriptor: "UnitDescriptor") -> "CompositeDimension":
    """
    Defines multiplication between Dimension(s) and other unit descriptors.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     CELCIUS = "C"
        >>> class TimeUnit(MeasurementUnit):
        ...     MINUTE = "min"
        >>> (TemperatureUnit.CELCIUS**3) * TimeUnit.MINUTE
        <CompositeDimension: (C^3) * min>
    """
    if isinstance(descriptor, CompositeDimension):
        numerator = descriptor.numerator.copy()
        denominator = descriptor.denominator.copy()
        numerator.append(self)
        return CompositeDimension(numerator=numerator, denominator=denominator)
    if isinstance(descriptor, Dimension):
        return CompositeDimension(numerator=[self, descriptor])
    if isinstance(descriptor, MeasurementUnit):
        return CompositeDimension(numerator=[self, Dimension(descriptor)])
    raise DescriptorBinaryOperationError(
        f"cannot multiply {self} with {descriptor}. "
    )

__pow__(power)

Defines exponentiation for Dimension(s).

Examples:

>>> class TimeUnit(MeasurementUnit):
...     SECOND = "s"
>>> (TimeUnit.SECOND**2)**3
<Dimension: s^6>
Source code in src/property_utils/units/descriptors.py
def __pow__(self, power: float) -> "Dimension":
    """
    Defines exponentiation for Dimension(s).

    Examples:
        >>> class TimeUnit(MeasurementUnit):
        ...     SECOND = "s"
        >>> (TimeUnit.SECOND**2)**3
        <Dimension: s^6>
    """
    if not isinstance(power, (float, int)):
        raise DescriptorExponentError(
            f"invalid exponent: {{ value: {power}, type: {type(power)} }};"
            " expected float or int. "
        )
    if self.unit.is_non_dimensional():
        self.power = 1
    else:
        self.power *= power
    return self

__truediv__(descriptor)

Defines division between Dimension(s) and other unit descriptors.

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     CELCIUS = "C"
>>> class TimeUnit(MeasurementUnit):
...     MINUTE = "min"
>>> (TemperatureUnit.CELCIUS**3) / TimeUnit.MINUTE
<CompositeDimension: (C^3) / min>
Source code in src/property_utils/units/descriptors.py
def __truediv__(self, descriptor: "UnitDescriptor") -> "CompositeDimension":
    """
    Defines division between Dimension(s) and other unit descriptors.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     CELCIUS = "C"
        >>> class TimeUnit(MeasurementUnit):
        ...     MINUTE = "min"
        >>> (TemperatureUnit.CELCIUS**3) / TimeUnit.MINUTE
        <CompositeDimension: (C^3) / min>
    """
    if isinstance(descriptor, CompositeDimension):
        numerator = descriptor.denominator.copy()
        denominator = descriptor.numerator.copy()
        numerator.append(self)
        return CompositeDimension(numerator=numerator, denominator=denominator)
    if isinstance(descriptor, Dimension):
        return CompositeDimension(numerator=[self], denominator=[descriptor])
    if isinstance(descriptor, MeasurementUnit):
        return CompositeDimension(
            numerator=[self], denominator=[Dimension(descriptor)]
        )
    raise DescriptorBinaryOperationError(
        f"cannot divide {self} with  {descriptor}. "
    )

from_descriptor(descriptor) staticmethod

Create a Dimension from given descriptor. If descriptor is already a Dimension, it returns the same object.

This function does not serve as a constructor for Dimension, rather it is intended to be used to convert an unknown unit descriptor to a Dimension.

Raises UnitDescriptorTypeError if given descriptor cannot be translated to a Dimension instance.

Source code in src/property_utils/units/descriptors.py
@staticmethod
def from_descriptor(descriptor: UnitDescriptor) -> "Dimension":
    """
    Create a Dimension from given descriptor.
    If descriptor is already a Dimension, it returns the same object.

    This function does not serve as a constructor for Dimension, rather it
    is intended to be used to convert an unknown unit descriptor to a Dimension.

    Raises `UnitDescriptorTypeError` if given descriptor cannot be translated
    to a Dimension instance.
    """
    if isinstance(descriptor, Dimension):
        return descriptor
    if isinstance(descriptor, MeasurementUnit):
        return Dimension(descriptor)
    raise UnitDescriptorTypeError(
        f"cannot create Dimension from descriptor: {descriptor}"
    )

inverse()

Create a composite with inverse units.

Examples:

>>> class LengthUnit(MeasurementUnit):
...     METER = "m"
>>> (LengthUnit.METER**2).inverse()
<CompositeDimension:  / (m^2)>
Source code in src/property_utils/units/descriptors.py
def inverse(self) -> "CompositeDimension":
    """
    Create a composite with inverse units.

    Examples:
        >>> class LengthUnit(MeasurementUnit):
        ...     METER = "m"
        >>> (LengthUnit.METER**2).inverse()
        <CompositeDimension:  / (m^2)>
    """
    return CompositeDimension([], [replace(self)])

isinstance(generic)

Returns True if the Dimension is an instance of the generic, False otherwise.

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     CELCIUS = "C"
>>> Dimension(TemperatureUnit.CELCIUS).isinstance(TemperatureUnit)
True
>>> Dimension(TemperatureUnit.CELCIUS).isinstance(TemperatureUnit**2)
False
Source code in src/property_utils/units/descriptors.py
def isinstance(self, generic: GenericUnitDescriptor) -> bool:
    """
    Returns True if the Dimension is an instance of the generic, False
    otherwise.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     CELCIUS = "C"

        >>> Dimension(TemperatureUnit.CELCIUS).isinstance(TemperatureUnit)
        True

        >>> Dimension(TemperatureUnit.CELCIUS).isinstance(TemperatureUnit**2)
        False
    """
    if isinstance(generic, MeasurementUnitType):
        generic = GenericDimension(generic)
    if not isinstance(generic, GenericDimension):
        return False

    if isinstance(self.unit, generic.unit_type) and self.power == generic.power:
        return True

    return False

isinstance_equivalent(generic)

Returns True if the UnitDescriptor is an instance-equivalent of the generic, False otherwise.

A unit descriptor is an instance-equivalent of a generic if the generic of the unit descriptor is equivalent to the generic.

Equivalence between generics is checked with the is_equivalent method.

Examples:

>>> class LengthUnit(MeasurementUnit):
...     METER = "m"
>>> class VolumeUnit(AliasMeasurementUnit):
...     @classmethod
...     def aliased_generic_descriptor(cls): return LengthUnit**3
>>> (LengthUnit.METER**3).isinstance_equivalent(VolumeUnit)
True
Source code in src/property_utils/units/descriptors.py
def isinstance_equivalent(self, generic: GenericUnitDescriptor) -> bool:
    """
    Returns True if the UnitDescriptor is an instance-equivalent of the generic,
    False otherwise.

    A unit descriptor is an instance-equivalent of a generic if the generic of the
    unit descriptor is equivalent to the generic.

    Equivalence between generics is checked with the `is_equivalent` method.

    Examples:
        >>> class LengthUnit(MeasurementUnit):
        ...     METER = "m"
        >>> class VolumeUnit(AliasMeasurementUnit):
        ...     @classmethod
        ...     def aliased_generic_descriptor(cls): return LengthUnit**3

        >>> (LengthUnit.METER**3).isinstance_equivalent(VolumeUnit)
        True
    """
    return self.to_generic().is_equivalent(generic)

si()

Returns this dimension in SI units.

Examples:

>>> class LengthUnit(MeasurementUnit):
...     METER = "m"
...     FOOT = "ft"
...     @classmethod
...     def si(cls): return cls.METER
>>> (LengthUnit.FOOT**2).si()
<Dimension: m^2>
Source code in src/property_utils/units/descriptors.py
def si(self) -> "Dimension":
    """
    Returns this dimension in SI units.

    Examples:
        >>> class LengthUnit(MeasurementUnit):
        ...     METER = "m"
        ...     FOOT = "ft"
        ...     @classmethod
        ...     def si(cls): return cls.METER

        >>> (LengthUnit.FOOT**2).si()
        <Dimension: m^2>
    """
    return Dimension(self.unit.si(), self.power)

to_generic()

Create a generic descriptor from this Dimension.

Examples:

>>> class AmountUnit(MeasurementUnit):
...     MOL = "mol"
>>> (AmountUnit.MOL**3.56).to_generic()
<GenericDimension: AmountUnit^3.56>
Source code in src/property_utils/units/descriptors.py
def to_generic(self) -> GenericDimension:
    """
    Create a generic descriptor from this Dimension.

    Examples:
        >>> class AmountUnit(MeasurementUnit):
        ...     MOL = "mol"

        >>> (AmountUnit.MOL**3.56).to_generic()
        <GenericDimension: AmountUnit^3.56>
    """
    return GenericDimension(type(self.unit), self.power)

GenericCompositeDimension dataclass

A GenericCompositeDimension represents a generic measurement unit that is composed from other generic measurement units.

Objects of this class can represent either multiplication or division between two GenericDimension objects.

Create objects by multiplying and diving GenericDimension or MeasurementUnitMeta class objects:

Examples:

>>> class LengthUnit(MeasurementUnit): ...
>>> class AmountUnit(MeasurementUnit): ...
>>> generic_molal_volume_dimension = (LengthUnit**3) / AmountUnit
>>> generic_molal_volume_dimension
<GenericCompositeDimension: (LengthUnit^3) / AmountUnit>
Source code in src/property_utils/units/descriptors.py
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
@dataclass
class GenericCompositeDimension:
    """
    A `GenericCompositeDimension` represents a generic measurement unit that is composed
    from other generic measurement units.

    Objects of this class can represent either multiplication or division between two
    `GenericDimension` objects.

    Create objects by multiplying and diving GenericDimension or MeasurementUnitMeta
    class objects:

    Examples:
        >>> class LengthUnit(MeasurementUnit): ...
        >>> class AmountUnit(MeasurementUnit): ...

        >>> generic_molal_volume_dimension = (LengthUnit**3) / AmountUnit
        >>> generic_molal_volume_dimension
        <GenericCompositeDimension: (LengthUnit^3) / AmountUnit>
    """

    numerator: List[GenericDimension] = field(default_factory=list)
    denominator: List[GenericDimension] = field(default_factory=list)

    def to_si(self) -> "CompositeDimension":
        """
        Create a CompositeDimension with SI units.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     KELVIN = "K"
            ...     @classmethod
            ...     def si(cls): return cls.KELVIN
            >>> class TimeUnit(MeasurementUnit):
            ...     SECOND = "s"
            ...     @classmethod
            ...     def si(cls): return cls.SECOND
            >>> class LengthUnit(MeasurementUnit):
            ...     METER = "m"
            ...     @classmethod
            ...     def si(cls): return cls.METER
            >>> (TemperatureUnit * LengthUnit / TimeUnit).to_si()
            <CompositeDimension: K * m / s>
        """
        return CompositeDimension(
            [n.to_si() for n in self.numerator], [d.to_si() for d in self.denominator]
        )

    def simplify(self) -> None:
        """
        Simplify the composite by merging common dimensions.

        Examples:
            >>> class PressureUnit(AliasMeasurementUnit): ...

            >>> class TemperatureUnit(MeasurementUnit): ...

            >>> class LengthUnit(MeasurementUnit): ...

            >>> class TimeUnit(MeasurementUnit): ...

            >>> composite = (PressureUnit**(-2)) / (TemperatureUnit**(-1))
            >>> composite
            <GenericCompositeDimension: (PressureUnit^-2) / (TemperatureUnit^-1)>
            >>> composite.simplify()
            >>> composite
            <GenericCompositeDimension: TemperatureUnit / (PressureUnit^2)>

            >>> composite = PressureUnit * LengthUnit * PressureUnit / TimeUnit
            >>> composite
            <GenericCompositeDimension: LengthUnit * PressureUnit * PressureUnit / TimeUnit>
            >>> composite.simplify()
            >>> composite
            <GenericCompositeDimension: (PressureUnit^2) * LengthUnit / TimeUnit>
        """
        exponents: Dict[MeasurementUnitType, float] = {}
        for n in self.numerator:
            if n.unit_type in exponents:
                exponents[n.unit_type] += n.power
            else:
                exponents[n.unit_type] = n.power

        for d in self.denominator:
            if d.unit_type in exponents:
                exponents[d.unit_type] -= d.power
            else:
                exponents[d.unit_type] = 0 - d.power

        numerator = []
        denominator = []
        for unit_type, exponent in exponents.items():
            if exponent > 0:
                numerator.append(GenericDimension(unit_type) ** exponent)
            elif exponent < 0:
                denominator.append(GenericDimension(unit_type) ** abs(exponent))

        self.numerator = numerator
        self.denominator = denominator

    def simplified(self) -> "GenericCompositeDimension":
        """
        Returns a simplified version of this composite generic as a new object.

        Examples:
            >>> class PressureUnit(AliasMeasurementUnit): ...

            >>> class TemperatureUnit(MeasurementUnit): ...

            >>> class LengthUnit(MeasurementUnit): ...

            >>> class TimeUnit(MeasurementUnit): ...

            >>> composite = (PressureUnit**(-2)) / (TemperatureUnit**(-1))
            >>> composite
            <GenericCompositeDimension: (PressureUnit^-2) / (TemperatureUnit^-1)>
            >>> composite.simplified()
            <GenericCompositeDimension: TemperatureUnit / (PressureUnit^2)>

            >>> composite = PressureUnit * LengthUnit * PressureUnit /TimeUnit
            >>> composite
            <GenericCompositeDimension: LengthUnit * PressureUnit * PressureUnit / TimeUnit>
            >>> composite.simplified()
            <GenericCompositeDimension: (PressureUnit^2) * LengthUnit / TimeUnit>
        """
        copy = replace(self)
        copy.simplify()
        return copy

    def analyse(self) -> None:
        """
        Analyse this composite by replacing its alias units with their aliased units.

        Examples:
            >>> class MassUnit(MeasurementUnit): ...
            >>> class LengthUnit(MeasurementUnit): ...
            >>> class TimeUnit(MeasurementUnit): ...

            >>> class PressureUnit(AliasMeasurementUnit):
            ...     @classmethod
            ...     def aliased_generic_descriptor(cls) -> GenericCompositeDimension:
            ...         return MassUnit / LengthUnit / (TimeUnit**2)

            >>> composite = PressureUnit / LengthUnit
            >>> composite
            <GenericCompositeDimension: PressureUnit / LengthUnit>

            >>> composite.analyse()
            >>> composite
            <GenericCompositeDimension: MassUnit / (TimeUnit^2) / LengthUnit / LengthUnit>
        """
        for n in self.numerator:
            if issubclass(n.unit_type, AliasMeasurementUnit):
                aliased = n.unit_type.aliased_generic_descriptor() ** n.power
                if isinstance(aliased, GenericDimension):
                    self.numerator.append(aliased)
                elif isinstance(aliased, GenericCompositeDimension):
                    self.numerator.extend(aliased.numerator)
                    self.denominator.extend(aliased.denominator)

                self.numerator.remove(n)

        for d in self.denominator:
            if issubclass(d.unit_type, AliasMeasurementUnit):
                aliased = d.unit_type.aliased_generic_descriptor() ** d.power
                if isinstance(aliased, GenericDimension):
                    self.denominator.append(aliased)
                elif isinstance(aliased, GenericCompositeDimension):
                    self.denominator.extend(aliased.numerator)
                    self.numerator.extend(aliased.denominator)

                self.denominator.remove(d)

    def analysed(self) -> "GenericCompositeDimension":
        """
        Returns an analysed version of this composite generic as a new object.

        Examples:
            >>> class MassUnit(MeasurementUnit): ...
            >>> class LengthUnit(MeasurementUnit): ...
            >>> class TimeUnit(MeasurementUnit): ...

            >>> class PressureUnit(AliasMeasurementUnit):
            ...     @classmethod
            ...     def aliased_generic_descriptor(cls) -> GenericCompositeDimension:
            ...         return MassUnit / LengthUnit / (TimeUnit**2)

            >>> composite = PressureUnit / LengthUnit
            >>> composite
            <GenericCompositeDimension: PressureUnit / LengthUnit>

            >>> composite.analysed()
            <GenericCompositeDimension: MassUnit / (TimeUnit^2) / LengthUnit / LengthUnit>
        """
        copy = replace(self)
        copy.analyse()
        return copy

    def inverse_generic(self):
        """
        Create a generic composite with inverse units.

        Examples:
            >>> class LengthUnit(MeasurementUnit): ...
            >>> class TimeUnit(MeasurementUnit): ...

            >>> (LengthUnit / TimeUnit).inverse_generic()
            <GenericCompositeDimension: TimeUnit / LengthUnit>
        """
        return GenericCompositeDimension(
            self._denominator_copy(), self._numerator_copy()
        )

    def is_equivalent(self, other: GenericUnitDescriptor) -> bool:
        """
        Returns True if this generic is equivalent to the given one, False otherwise.

        A generic can be equivalent with another generic if the latter or the former
        is an alias.

        Examples:
            >>> class LengthUnit(MeasurementUnit): ...
            >>> class MassUnit(MeasurementUnit): ...
            >>> class TimeUnit(MeasurementUnit): ...
            >>> class ForceUnit(AliasMeasurementUnit):
            ...     @classmethod
            ...     def aliased_generic_descriptor(cls):
            ...         return MassUnit * LengthUnit / (TimeUnit**2)

            >>> ForceUnit.is_equivalent(MassUnit * LengthUnit / (TimeUnit**2))
            True

            >>> class EnergyUnit(AliasMeasurementUnit):
            ...     @classmethod
            ...     def aliased_generic_descriptor(cls):
            ...         return ForceUnit * LengthUnit

            >>> EnergyUnit.is_equivalent(MassUnit * (LengthUnit**2) / (TimeUnit**2))
            True
        """
        if isinstance(other, MeasurementUnitType):
            if (
                self.denominator == []
                and len(self.numerator) == 1
                and self.numerator[0].is_equivalent(other)
            ):
                return True

            if issubclass(other, AliasMeasurementUnit):
                return other.aliased_generic_descriptor().is_equivalent(self)  # type: ignore[attr-defined]

        elif isinstance(other, GenericDimension):
            if (
                self.denominator == []
                and len(self.numerator) == 1
                and self.numerator[0].is_equivalent(other)
            ):
                return True

            if issubclass(other.unit_type, AliasMeasurementUnit):
                return (
                    other.unit_type.aliased_generic_descriptor() ** other.power
                ).is_equivalent(self)

        elif isinstance(other, GenericCompositeDimension):
            _generic = other.analysed().simplified()
            _self = self.analysed().simplified()

            return Counter(_self.numerator) == Counter(_generic.numerator) and (
                Counter(_self.denominator) == Counter(_generic.denominator)
            )

        return False

    def has_no_units(self) -> bool:
        """
        Returns True if the generic composite dimension does not have any units, False
        otherwise.

        Examples:
            >>> class LengthUnit(MeasurementUnit): ...

            >>> GenericCompositeDimension().has_no_units()
            True
            >>> GenericCompositeDimension([LengthUnit]).has_no_units()
            False
        """
        return len(self.denominator) == 0 and len(self.numerator) == 0

    def _numerator_copy(self) -> List[GenericDimension]:
        return [replace(n) for n in self.numerator]

    def _denominator_copy(self) -> List[GenericDimension]:
        return [replace(d) for d in self.denominator]

    def __mul__(self, generic: GenericUnitDescriptor) -> "GenericCompositeDimension":
        """
        Defines multiplication between GenericCompositeDimension(s) and other generic
        descriptors.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit): ...
            >>> class TimeUnit(MeasurementUnit): ...
            >>> class LengthUnit(MeasurementUnit): ...
            >>> (TemperatureUnit / LengthUnit) * TimeUnit
            <GenericCompositeDimension: TemperatureUnit * TimeUnit / LengthUnit>
        """
        numerator = self.numerator.copy()
        denominator = self.denominator.copy()
        if isinstance(generic, GenericCompositeDimension):
            numerator.extend(generic.numerator)
            denominator.extend(generic.denominator)
            return GenericCompositeDimension(
                numerator=numerator, denominator=denominator
            )

        if isinstance(generic, GenericDimension):
            numerator.append(generic)
            return GenericCompositeDimension(
                numerator=numerator, denominator=denominator
            )

        if isinstance(generic, MeasurementUnitType):
            numerator.append(GenericDimension(generic))
            return GenericCompositeDimension(
                numerator=numerator, denominator=denominator
            )
        raise DescriptorBinaryOperationError(f"cannot multiply {self} with {generic}. ")

    def __truediv__(
        self, generic: GenericUnitDescriptor
    ) -> "GenericCompositeDimension":
        """
        Defines division between GenericCompositeDimension(s) and other generic
        descriptors.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit): ...
            >>> class TimeUnit(MeasurementUnit): ...
            >>> class LengthUnit(MeasurementUnit): ...
            >>> (TemperatureUnit * LengthUnit) / TimeUnit
            <GenericCompositeDimension: LengthUnit * TemperatureUnit / TimeUnit>
        """
        numerator = self.numerator.copy()
        denominator = self.denominator.copy()
        if isinstance(generic, GenericCompositeDimension):
            numerator.extend(generic.denominator)
            denominator.extend(generic.numerator)
            return GenericCompositeDimension(
                numerator=numerator, denominator=denominator
            )
        if isinstance(generic, GenericDimension):
            denominator.append(generic)
            return GenericCompositeDimension(
                numerator=numerator, denominator=denominator
            )
        if isinstance(generic, MeasurementUnitType):
            denominator.append(GenericDimension(generic))
            return GenericCompositeDimension(
                numerator=numerator, denominator=denominator
            )
        raise DescriptorBinaryOperationError(f"cannot divide {self} with {generic}. ")

    def __pow__(self, power: float) -> "GenericCompositeDimension":
        """
        Defines exponentiation for GenericCompositeDimension(s).

        Examples:
            >>> class TemperatureUnit(MeasurementUnit): ...
            >>> class TimeUnit(MeasurementUnit): ...

            >>> (TemperatureUnit / TimeUnit)**2
            <GenericCompositeDimension: (TemperatureUnit^2) / (TimeUnit^2)>
        """
        if not isinstance(power, (float, int)):
            raise DescriptorExponentError(
                f"invalid exponent: {{ value: {power}, type: {type(power)} }};"
                " expected float or int. "
            )
        numerator = [n**power for n in self._numerator_copy()]
        denominator = [d**power for d in self._denominator_copy()]
        return GenericCompositeDimension(numerator, denominator)

    def __eq__(self, generic) -> bool:
        """
        Defines equality for GenericCompositeDimension(s).

        Examples:
            >>> class TemperatureUnit(MeasurementUnit): ...
            >>> class TimeUnit(MeasurementUnit): ...
            >>> (TemperatureUnit / TimeUnit) != (TimeUnit / TemperatureUnit)
            True
        """
        if not isinstance(generic, GenericCompositeDimension):
            return False
        return Counter(self.numerator) == Counter(generic.numerator) and (
            Counter(self.denominator) == Counter(generic.denominator)
        )

    def __hash__(self) -> int:
        return hash(str(self))

    def __str__(self) -> str:
        numerators = " * ".join(sorted([str(n) for n in self.numerator]))
        denominators = " / ".join(sorted([str(d) for d in self.denominator]))
        if len(denominators) > 0:
            denominators = " / " + denominators
        return numerators + denominators

    def __repr__(self) -> str:
        numerators = " * ".join(sorted([str(n) for n in self.numerator]))
        denominators = " / ".join(sorted([str(d) for d in self.denominator]))
        if len(denominators) > 0:
            denominators = " / " + denominators
        return f"<GenericCompositeDimension: {numerators + denominators}>"

__eq__(generic)

Defines equality for GenericCompositeDimension(s).

Examples:

>>> class TemperatureUnit(MeasurementUnit): ...
>>> class TimeUnit(MeasurementUnit): ...
>>> (TemperatureUnit / TimeUnit) != (TimeUnit / TemperatureUnit)
True
Source code in src/property_utils/units/descriptors.py
def __eq__(self, generic) -> bool:
    """
    Defines equality for GenericCompositeDimension(s).

    Examples:
        >>> class TemperatureUnit(MeasurementUnit): ...
        >>> class TimeUnit(MeasurementUnit): ...
        >>> (TemperatureUnit / TimeUnit) != (TimeUnit / TemperatureUnit)
        True
    """
    if not isinstance(generic, GenericCompositeDimension):
        return False
    return Counter(self.numerator) == Counter(generic.numerator) and (
        Counter(self.denominator) == Counter(generic.denominator)
    )

__mul__(generic)

Defines multiplication between GenericCompositeDimension(s) and other generic descriptors.

Examples:

>>> class TemperatureUnit(MeasurementUnit): ...
>>> class TimeUnit(MeasurementUnit): ...
>>> class LengthUnit(MeasurementUnit): ...
>>> (TemperatureUnit / LengthUnit) * TimeUnit
<GenericCompositeDimension: TemperatureUnit * TimeUnit / LengthUnit>
Source code in src/property_utils/units/descriptors.py
def __mul__(self, generic: GenericUnitDescriptor) -> "GenericCompositeDimension":
    """
    Defines multiplication between GenericCompositeDimension(s) and other generic
    descriptors.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit): ...
        >>> class TimeUnit(MeasurementUnit): ...
        >>> class LengthUnit(MeasurementUnit): ...
        >>> (TemperatureUnit / LengthUnit) * TimeUnit
        <GenericCompositeDimension: TemperatureUnit * TimeUnit / LengthUnit>
    """
    numerator = self.numerator.copy()
    denominator = self.denominator.copy()
    if isinstance(generic, GenericCompositeDimension):
        numerator.extend(generic.numerator)
        denominator.extend(generic.denominator)
        return GenericCompositeDimension(
            numerator=numerator, denominator=denominator
        )

    if isinstance(generic, GenericDimension):
        numerator.append(generic)
        return GenericCompositeDimension(
            numerator=numerator, denominator=denominator
        )

    if isinstance(generic, MeasurementUnitType):
        numerator.append(GenericDimension(generic))
        return GenericCompositeDimension(
            numerator=numerator, denominator=denominator
        )
    raise DescriptorBinaryOperationError(f"cannot multiply {self} with {generic}. ")

__pow__(power)

Defines exponentiation for GenericCompositeDimension(s).

Examples:

>>> class TemperatureUnit(MeasurementUnit): ...
>>> class TimeUnit(MeasurementUnit): ...
>>> (TemperatureUnit / TimeUnit)**2
<GenericCompositeDimension: (TemperatureUnit^2) / (TimeUnit^2)>
Source code in src/property_utils/units/descriptors.py
def __pow__(self, power: float) -> "GenericCompositeDimension":
    """
    Defines exponentiation for GenericCompositeDimension(s).

    Examples:
        >>> class TemperatureUnit(MeasurementUnit): ...
        >>> class TimeUnit(MeasurementUnit): ...

        >>> (TemperatureUnit / TimeUnit)**2
        <GenericCompositeDimension: (TemperatureUnit^2) / (TimeUnit^2)>
    """
    if not isinstance(power, (float, int)):
        raise DescriptorExponentError(
            f"invalid exponent: {{ value: {power}, type: {type(power)} }};"
            " expected float or int. "
        )
    numerator = [n**power for n in self._numerator_copy()]
    denominator = [d**power for d in self._denominator_copy()]
    return GenericCompositeDimension(numerator, denominator)

__truediv__(generic)

Defines division between GenericCompositeDimension(s) and other generic descriptors.

Examples:

>>> class TemperatureUnit(MeasurementUnit): ...
>>> class TimeUnit(MeasurementUnit): ...
>>> class LengthUnit(MeasurementUnit): ...
>>> (TemperatureUnit * LengthUnit) / TimeUnit
<GenericCompositeDimension: LengthUnit * TemperatureUnit / TimeUnit>
Source code in src/property_utils/units/descriptors.py
def __truediv__(
    self, generic: GenericUnitDescriptor
) -> "GenericCompositeDimension":
    """
    Defines division between GenericCompositeDimension(s) and other generic
    descriptors.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit): ...
        >>> class TimeUnit(MeasurementUnit): ...
        >>> class LengthUnit(MeasurementUnit): ...
        >>> (TemperatureUnit * LengthUnit) / TimeUnit
        <GenericCompositeDimension: LengthUnit * TemperatureUnit / TimeUnit>
    """
    numerator = self.numerator.copy()
    denominator = self.denominator.copy()
    if isinstance(generic, GenericCompositeDimension):
        numerator.extend(generic.denominator)
        denominator.extend(generic.numerator)
        return GenericCompositeDimension(
            numerator=numerator, denominator=denominator
        )
    if isinstance(generic, GenericDimension):
        denominator.append(generic)
        return GenericCompositeDimension(
            numerator=numerator, denominator=denominator
        )
    if isinstance(generic, MeasurementUnitType):
        denominator.append(GenericDimension(generic))
        return GenericCompositeDimension(
            numerator=numerator, denominator=denominator
        )
    raise DescriptorBinaryOperationError(f"cannot divide {self} with {generic}. ")

analyse()

Analyse this composite by replacing its alias units with their aliased units.

Examples:

>>> class MassUnit(MeasurementUnit): ...
>>> class LengthUnit(MeasurementUnit): ...
>>> class TimeUnit(MeasurementUnit): ...
>>> class PressureUnit(AliasMeasurementUnit):
...     @classmethod
...     def aliased_generic_descriptor(cls) -> GenericCompositeDimension:
...         return MassUnit / LengthUnit / (TimeUnit**2)
>>> composite = PressureUnit / LengthUnit
>>> composite
<GenericCompositeDimension: PressureUnit / LengthUnit>
>>> composite.analyse()
>>> composite
<GenericCompositeDimension: MassUnit / (TimeUnit^2) / LengthUnit / LengthUnit>
Source code in src/property_utils/units/descriptors.py
def analyse(self) -> None:
    """
    Analyse this composite by replacing its alias units with their aliased units.

    Examples:
        >>> class MassUnit(MeasurementUnit): ...
        >>> class LengthUnit(MeasurementUnit): ...
        >>> class TimeUnit(MeasurementUnit): ...

        >>> class PressureUnit(AliasMeasurementUnit):
        ...     @classmethod
        ...     def aliased_generic_descriptor(cls) -> GenericCompositeDimension:
        ...         return MassUnit / LengthUnit / (TimeUnit**2)

        >>> composite = PressureUnit / LengthUnit
        >>> composite
        <GenericCompositeDimension: PressureUnit / LengthUnit>

        >>> composite.analyse()
        >>> composite
        <GenericCompositeDimension: MassUnit / (TimeUnit^2) / LengthUnit / LengthUnit>
    """
    for n in self.numerator:
        if issubclass(n.unit_type, AliasMeasurementUnit):
            aliased = n.unit_type.aliased_generic_descriptor() ** n.power
            if isinstance(aliased, GenericDimension):
                self.numerator.append(aliased)
            elif isinstance(aliased, GenericCompositeDimension):
                self.numerator.extend(aliased.numerator)
                self.denominator.extend(aliased.denominator)

            self.numerator.remove(n)

    for d in self.denominator:
        if issubclass(d.unit_type, AliasMeasurementUnit):
            aliased = d.unit_type.aliased_generic_descriptor() ** d.power
            if isinstance(aliased, GenericDimension):
                self.denominator.append(aliased)
            elif isinstance(aliased, GenericCompositeDimension):
                self.denominator.extend(aliased.numerator)
                self.numerator.extend(aliased.denominator)

            self.denominator.remove(d)

analysed()

Returns an analysed version of this composite generic as a new object.

Examples:

>>> class MassUnit(MeasurementUnit): ...
>>> class LengthUnit(MeasurementUnit): ...
>>> class TimeUnit(MeasurementUnit): ...
>>> class PressureUnit(AliasMeasurementUnit):
...     @classmethod
...     def aliased_generic_descriptor(cls) -> GenericCompositeDimension:
...         return MassUnit / LengthUnit / (TimeUnit**2)
>>> composite = PressureUnit / LengthUnit
>>> composite
<GenericCompositeDimension: PressureUnit / LengthUnit>
>>> composite.analysed()
<GenericCompositeDimension: MassUnit / (TimeUnit^2) / LengthUnit / LengthUnit>
Source code in src/property_utils/units/descriptors.py
def analysed(self) -> "GenericCompositeDimension":
    """
    Returns an analysed version of this composite generic as a new object.

    Examples:
        >>> class MassUnit(MeasurementUnit): ...
        >>> class LengthUnit(MeasurementUnit): ...
        >>> class TimeUnit(MeasurementUnit): ...

        >>> class PressureUnit(AliasMeasurementUnit):
        ...     @classmethod
        ...     def aliased_generic_descriptor(cls) -> GenericCompositeDimension:
        ...         return MassUnit / LengthUnit / (TimeUnit**2)

        >>> composite = PressureUnit / LengthUnit
        >>> composite
        <GenericCompositeDimension: PressureUnit / LengthUnit>

        >>> composite.analysed()
        <GenericCompositeDimension: MassUnit / (TimeUnit^2) / LengthUnit / LengthUnit>
    """
    copy = replace(self)
    copy.analyse()
    return copy

has_no_units()

Returns True if the generic composite dimension does not have any units, False otherwise.

Examples:

>>> class LengthUnit(MeasurementUnit): ...
>>> GenericCompositeDimension().has_no_units()
True
>>> GenericCompositeDimension([LengthUnit]).has_no_units()
False
Source code in src/property_utils/units/descriptors.py
def has_no_units(self) -> bool:
    """
    Returns True if the generic composite dimension does not have any units, False
    otherwise.

    Examples:
        >>> class LengthUnit(MeasurementUnit): ...

        >>> GenericCompositeDimension().has_no_units()
        True
        >>> GenericCompositeDimension([LengthUnit]).has_no_units()
        False
    """
    return len(self.denominator) == 0 and len(self.numerator) == 0

inverse_generic()

Create a generic composite with inverse units.

Examples:

>>> class LengthUnit(MeasurementUnit): ...
>>> class TimeUnit(MeasurementUnit): ...
>>> (LengthUnit / TimeUnit).inverse_generic()
<GenericCompositeDimension: TimeUnit / LengthUnit>
Source code in src/property_utils/units/descriptors.py
def inverse_generic(self):
    """
    Create a generic composite with inverse units.

    Examples:
        >>> class LengthUnit(MeasurementUnit): ...
        >>> class TimeUnit(MeasurementUnit): ...

        >>> (LengthUnit / TimeUnit).inverse_generic()
        <GenericCompositeDimension: TimeUnit / LengthUnit>
    """
    return GenericCompositeDimension(
        self._denominator_copy(), self._numerator_copy()
    )

is_equivalent(other)

Returns True if this generic is equivalent to the given one, False otherwise.

A generic can be equivalent with another generic if the latter or the former is an alias.

Examples:

>>> class LengthUnit(MeasurementUnit): ...
>>> class MassUnit(MeasurementUnit): ...
>>> class TimeUnit(MeasurementUnit): ...
>>> class ForceUnit(AliasMeasurementUnit):
...     @classmethod
...     def aliased_generic_descriptor(cls):
...         return MassUnit * LengthUnit / (TimeUnit**2)
>>> ForceUnit.is_equivalent(MassUnit * LengthUnit / (TimeUnit**2))
True
>>> class EnergyUnit(AliasMeasurementUnit):
...     @classmethod
...     def aliased_generic_descriptor(cls):
...         return ForceUnit * LengthUnit
>>> EnergyUnit.is_equivalent(MassUnit * (LengthUnit**2) / (TimeUnit**2))
True
Source code in src/property_utils/units/descriptors.py
def is_equivalent(self, other: GenericUnitDescriptor) -> bool:
    """
    Returns True if this generic is equivalent to the given one, False otherwise.

    A generic can be equivalent with another generic if the latter or the former
    is an alias.

    Examples:
        >>> class LengthUnit(MeasurementUnit): ...
        >>> class MassUnit(MeasurementUnit): ...
        >>> class TimeUnit(MeasurementUnit): ...
        >>> class ForceUnit(AliasMeasurementUnit):
        ...     @classmethod
        ...     def aliased_generic_descriptor(cls):
        ...         return MassUnit * LengthUnit / (TimeUnit**2)

        >>> ForceUnit.is_equivalent(MassUnit * LengthUnit / (TimeUnit**2))
        True

        >>> class EnergyUnit(AliasMeasurementUnit):
        ...     @classmethod
        ...     def aliased_generic_descriptor(cls):
        ...         return ForceUnit * LengthUnit

        >>> EnergyUnit.is_equivalent(MassUnit * (LengthUnit**2) / (TimeUnit**2))
        True
    """
    if isinstance(other, MeasurementUnitType):
        if (
            self.denominator == []
            and len(self.numerator) == 1
            and self.numerator[0].is_equivalent(other)
        ):
            return True

        if issubclass(other, AliasMeasurementUnit):
            return other.aliased_generic_descriptor().is_equivalent(self)  # type: ignore[attr-defined]

    elif isinstance(other, GenericDimension):
        if (
            self.denominator == []
            and len(self.numerator) == 1
            and self.numerator[0].is_equivalent(other)
        ):
            return True

        if issubclass(other.unit_type, AliasMeasurementUnit):
            return (
                other.unit_type.aliased_generic_descriptor() ** other.power
            ).is_equivalent(self)

    elif isinstance(other, GenericCompositeDimension):
        _generic = other.analysed().simplified()
        _self = self.analysed().simplified()

        return Counter(_self.numerator) == Counter(_generic.numerator) and (
            Counter(_self.denominator) == Counter(_generic.denominator)
        )

    return False

simplified()

Returns a simplified version of this composite generic as a new object.

Examples:

>>> class PressureUnit(AliasMeasurementUnit): ...
>>> class TemperatureUnit(MeasurementUnit): ...
>>> class LengthUnit(MeasurementUnit): ...
>>> class TimeUnit(MeasurementUnit): ...
>>> composite = (PressureUnit**(-2)) / (TemperatureUnit**(-1))
>>> composite
<GenericCompositeDimension: (PressureUnit^-2) / (TemperatureUnit^-1)>
>>> composite.simplified()
<GenericCompositeDimension: TemperatureUnit / (PressureUnit^2)>
>>> composite = PressureUnit * LengthUnit * PressureUnit /TimeUnit
>>> composite
<GenericCompositeDimension: LengthUnit * PressureUnit * PressureUnit / TimeUnit>
>>> composite.simplified()
<GenericCompositeDimension: (PressureUnit^2) * LengthUnit / TimeUnit>
Source code in src/property_utils/units/descriptors.py
def simplified(self) -> "GenericCompositeDimension":
    """
    Returns a simplified version of this composite generic as a new object.

    Examples:
        >>> class PressureUnit(AliasMeasurementUnit): ...

        >>> class TemperatureUnit(MeasurementUnit): ...

        >>> class LengthUnit(MeasurementUnit): ...

        >>> class TimeUnit(MeasurementUnit): ...

        >>> composite = (PressureUnit**(-2)) / (TemperatureUnit**(-1))
        >>> composite
        <GenericCompositeDimension: (PressureUnit^-2) / (TemperatureUnit^-1)>
        >>> composite.simplified()
        <GenericCompositeDimension: TemperatureUnit / (PressureUnit^2)>

        >>> composite = PressureUnit * LengthUnit * PressureUnit /TimeUnit
        >>> composite
        <GenericCompositeDimension: LengthUnit * PressureUnit * PressureUnit / TimeUnit>
        >>> composite.simplified()
        <GenericCompositeDimension: (PressureUnit^2) * LengthUnit / TimeUnit>
    """
    copy = replace(self)
    copy.simplify()
    return copy

simplify()

Simplify the composite by merging common dimensions.

Examples:

>>> class PressureUnit(AliasMeasurementUnit): ...
>>> class TemperatureUnit(MeasurementUnit): ...
>>> class LengthUnit(MeasurementUnit): ...
>>> class TimeUnit(MeasurementUnit): ...
>>> composite = (PressureUnit**(-2)) / (TemperatureUnit**(-1))
>>> composite
<GenericCompositeDimension: (PressureUnit^-2) / (TemperatureUnit^-1)>
>>> composite.simplify()
>>> composite
<GenericCompositeDimension: TemperatureUnit / (PressureUnit^2)>
>>> composite = PressureUnit * LengthUnit * PressureUnit / TimeUnit
>>> composite
<GenericCompositeDimension: LengthUnit * PressureUnit * PressureUnit / TimeUnit>
>>> composite.simplify()
>>> composite
<GenericCompositeDimension: (PressureUnit^2) * LengthUnit / TimeUnit>
Source code in src/property_utils/units/descriptors.py
def simplify(self) -> None:
    """
    Simplify the composite by merging common dimensions.

    Examples:
        >>> class PressureUnit(AliasMeasurementUnit): ...

        >>> class TemperatureUnit(MeasurementUnit): ...

        >>> class LengthUnit(MeasurementUnit): ...

        >>> class TimeUnit(MeasurementUnit): ...

        >>> composite = (PressureUnit**(-2)) / (TemperatureUnit**(-1))
        >>> composite
        <GenericCompositeDimension: (PressureUnit^-2) / (TemperatureUnit^-1)>
        >>> composite.simplify()
        >>> composite
        <GenericCompositeDimension: TemperatureUnit / (PressureUnit^2)>

        >>> composite = PressureUnit * LengthUnit * PressureUnit / TimeUnit
        >>> composite
        <GenericCompositeDimension: LengthUnit * PressureUnit * PressureUnit / TimeUnit>
        >>> composite.simplify()
        >>> composite
        <GenericCompositeDimension: (PressureUnit^2) * LengthUnit / TimeUnit>
    """
    exponents: Dict[MeasurementUnitType, float] = {}
    for n in self.numerator:
        if n.unit_type in exponents:
            exponents[n.unit_type] += n.power
        else:
            exponents[n.unit_type] = n.power

    for d in self.denominator:
        if d.unit_type in exponents:
            exponents[d.unit_type] -= d.power
        else:
            exponents[d.unit_type] = 0 - d.power

    numerator = []
    denominator = []
    for unit_type, exponent in exponents.items():
        if exponent > 0:
            numerator.append(GenericDimension(unit_type) ** exponent)
        elif exponent < 0:
            denominator.append(GenericDimension(unit_type) ** abs(exponent))

    self.numerator = numerator
    self.denominator = denominator

to_si()

Create a CompositeDimension with SI units.

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     KELVIN = "K"
...     @classmethod
...     def si(cls): return cls.KELVIN
>>> class TimeUnit(MeasurementUnit):
...     SECOND = "s"
...     @classmethod
...     def si(cls): return cls.SECOND
>>> class LengthUnit(MeasurementUnit):
...     METER = "m"
...     @classmethod
...     def si(cls): return cls.METER
>>> (TemperatureUnit * LengthUnit / TimeUnit).to_si()
<CompositeDimension: K * m / s>
Source code in src/property_utils/units/descriptors.py
def to_si(self) -> "CompositeDimension":
    """
    Create a CompositeDimension with SI units.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     KELVIN = "K"
        ...     @classmethod
        ...     def si(cls): return cls.KELVIN
        >>> class TimeUnit(MeasurementUnit):
        ...     SECOND = "s"
        ...     @classmethod
        ...     def si(cls): return cls.SECOND
        >>> class LengthUnit(MeasurementUnit):
        ...     METER = "m"
        ...     @classmethod
        ...     def si(cls): return cls.METER
        >>> (TemperatureUnit * LengthUnit / TimeUnit).to_si()
        <CompositeDimension: K * m / s>
    """
    return CompositeDimension(
        [n.to_si() for n in self.numerator], [d.to_si() for d in self.denominator]
    )

GenericDimension dataclass

Represents a generic property unit or a generic property unit to some power.

e.g. a generic dimension can be a temperature dimension or a volume dimension (length dimension to the 3rd power).

Examples:

>>> class MassUnit(MeasurementUnit): ...
>>> MassUnit**2
<GenericDimension: MassUnit^2>
Source code in src/property_utils/units/descriptors.py
@dataclass
class GenericDimension:
    """
    Represents a generic property unit or a generic property unit to some power.

    e.g. a generic dimension can be a temperature dimension or a volume dimension
    (length dimension to the 3rd power).

    Examples:
        >>> class MassUnit(MeasurementUnit): ...
        >>> MassUnit**2
        <GenericDimension: MassUnit^2>
    """

    unit_type: MeasurementUnitType
    power: float = 1

    def __init__(self, unit_type: MeasurementUnitType, power: float = 1) -> None:
        if not isinstance(power, (float, int)):
            raise DescriptorExponentError(
                f"invalid exponent: {{ value: {power}, type: {type(power)} }};"
                " expected float or int. "
            )
        self.unit_type = unit_type
        self.power = power

    def to_si(self) -> "Dimension":
        """
        Create a Dimension with SI units.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     CELCIUS = "C"
            ...     KELVIN = "K"
            ...     @classmethod
            ...     def si(cls): return cls.KELVIN
            >>> (TemperatureUnit**2).to_si()
            <Dimension: K^2>
        """
        return Dimension(self.unit_type.to_si(), self.power)

    def inverse_generic(self) -> "GenericCompositeDimension":
        """
        Create a generic composite with inverse units.

        Examples:
            >>> class LengthUnit(MeasurementUnit): ...
            >>> (LengthUnit**2).inverse_generic()
            <GenericCompositeDimension:  / (LengthUnit^2)>
        """
        return GenericCompositeDimension([], [replace(self)])

    # pylint: disable=too-many-return-statements
    def is_equivalent(self, other: GenericUnitDescriptor) -> bool:
        """
        Returns True if this generic is equivalent to the given one, False otherwise.

        A generic can be equivalent with another generic if the latter or the former
        is an alias.

        Examples:
            >>> class LengthUnit(MeasurementUnit): ...
            >>> class MassUnit(MeasurementUnit): ...
            >>> class TimeUnit(MeasurementUnit): ...
            >>> class ForceUnit(AliasMeasurementUnit):
            ...     @classmethod
            ...     def aliased_generic_descriptor(cls):
            ...         return MassUnit * LengthUnit / (TimeUnit**2)

            >>> ForceUnit.is_equivalent(MassUnit * LengthUnit / (TimeUnit**2))
            True

            >>> class EnergyUnit(AliasMeasurementUnit):
            ...     @classmethod
            ...     def aliased_generic_descriptor(cls):
            ...         return ForceUnit * LengthUnit

            >>> EnergyUnit.is_equivalent(MassUnit * (LengthUnit**2) / (TimeUnit**2))
            True
        """
        if isinstance(other, MeasurementUnitType):
            if self.unit_type == other and self.power == 1:
                return True

            if issubclass(other, AliasMeasurementUnit):
                return other.aliased_generic_descriptor().is_equivalent(self)  # type: ignore[attr-defined]

        elif isinstance(other, GenericDimension):
            if self.unit_type == other.unit_type and self.power == other.power:
                return True

            if issubclass(other.unit_type, AliasMeasurementUnit):
                return (
                    other.unit_type.aliased_generic_descriptor() ** other.power
                ).is_equivalent(self)

            if issubclass(self.unit_type, AliasMeasurementUnit):
                return (
                    self.unit_type.aliased_generic_descriptor() ** self.power
                ).is_equivalent(other)

        elif isinstance(other, GenericCompositeDimension):
            if (
                other.denominator == []
                and len(other.numerator) == 1
                and other.numerator[0].is_equivalent(self)
            ):
                return True

            if issubclass(self.unit_type, AliasMeasurementUnit):
                return (
                    self.unit_type.aliased_generic_descriptor() ** self.power
                ).is_equivalent(other)

        return False

    def __mul__(self, generic: GenericUnitDescriptor) -> "GenericCompositeDimension":
        """
        Defines multiplication between GenericDimension(s) and other generic
        descriptors.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit): ...
            >>> class TimeUnit(MeasurementUnit): ...
            >>> (TemperatureUnit**2) * TimeUnit
            <GenericCompositeDimension: (TemperatureUnit^2) * TimeUnit>
        """
        if isinstance(generic, GenericCompositeDimension):
            numerator = generic.numerator.copy()
            denominator = generic.denominator.copy()
            numerator.append(self)
            return GenericCompositeDimension(
                numerator=numerator, denominator=denominator
            )
        if isinstance(generic, GenericDimension):
            return GenericCompositeDimension(numerator=[self, generic])
        if isinstance(generic, MeasurementUnitType):
            return GenericCompositeDimension(
                numerator=[self, GenericDimension(generic)]
            )
        raise DescriptorBinaryOperationError(f"cannot multiply {self} with {generic}. ")

    def __truediv__(
        self, generic: GenericUnitDescriptor
    ) -> "GenericCompositeDimension":
        """
        Defines division between GenericDimension(s) and other generic descriptors.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit): ...
            >>> class TimeUnit(MeasurementUnit): ...
            >>> TemperatureUnit / (TimeUnit**2)
            <GenericCompositeDimension: TemperatureUnit / (TimeUnit^2)>
        """
        if isinstance(generic, GenericCompositeDimension):
            numerator = generic.denominator.copy()
            denominator = generic.numerator.copy()
            numerator.append(self)
            return GenericCompositeDimension(
                numerator=numerator, denominator=denominator
            )
        if isinstance(generic, GenericDimension):
            return GenericCompositeDimension(numerator=[self], denominator=[generic])
        if isinstance(generic, MeasurementUnitType):
            return GenericCompositeDimension(
                numerator=[self], denominator=[GenericDimension(generic)]
            )
        raise DescriptorBinaryOperationError(f"cannot divide {self} with {generic}. ")

    def __pow__(self, power: float) -> "GenericDimension":
        """
        Defines exponentiation of GenericDimension.

        Examples:
            >>> class TimeUnit(MeasurementUnit): ...
            >>> (TimeUnit**2)**3
            <GenericDimension: TimeUnit^6>
        """
        if not isinstance(power, (float, int)):
            raise DescriptorExponentError(
                f"invalid exponent: {{ value: {power}, type: {type(power)} }};"
                " expected float or int. "
            )
        self.power *= power
        return self

    def __eq__(self, generic) -> bool:
        """
        Defines equality for GenericDimension(s).

        Examples:
            >>> class TemperatureUnit(MeasurementUnit): ...
            >>> (TemperatureUnit**2) != TemperatureUnit
            True
        """
        if not isinstance(generic, GenericDimension):
            return False
        return self.unit_type == generic.unit_type and self.power == generic.power

    def __hash__(self) -> int:
        return hash(str(self))

    def __str__(self) -> str:
        s = self.unit_type.__name__
        if self.power != 1:
            return f"({s}^{self.power})"
        return s

    def __repr__(self) -> str:
        if self.power != 1:
            return f"<GenericDimension: {self.unit_type.__name__}^{self.power}>"
        return f"<GenericDimension: {self.unit_type.__name__}>"

__eq__(generic)

Defines equality for GenericDimension(s).

Examples:

>>> class TemperatureUnit(MeasurementUnit): ...
>>> (TemperatureUnit**2) != TemperatureUnit
True
Source code in src/property_utils/units/descriptors.py
def __eq__(self, generic) -> bool:
    """
    Defines equality for GenericDimension(s).

    Examples:
        >>> class TemperatureUnit(MeasurementUnit): ...
        >>> (TemperatureUnit**2) != TemperatureUnit
        True
    """
    if not isinstance(generic, GenericDimension):
        return False
    return self.unit_type == generic.unit_type and self.power == generic.power

__mul__(generic)

Defines multiplication between GenericDimension(s) and other generic descriptors.

Examples:

>>> class TemperatureUnit(MeasurementUnit): ...
>>> class TimeUnit(MeasurementUnit): ...
>>> (TemperatureUnit**2) * TimeUnit
<GenericCompositeDimension: (TemperatureUnit^2) * TimeUnit>
Source code in src/property_utils/units/descriptors.py
def __mul__(self, generic: GenericUnitDescriptor) -> "GenericCompositeDimension":
    """
    Defines multiplication between GenericDimension(s) and other generic
    descriptors.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit): ...
        >>> class TimeUnit(MeasurementUnit): ...
        >>> (TemperatureUnit**2) * TimeUnit
        <GenericCompositeDimension: (TemperatureUnit^2) * TimeUnit>
    """
    if isinstance(generic, GenericCompositeDimension):
        numerator = generic.numerator.copy()
        denominator = generic.denominator.copy()
        numerator.append(self)
        return GenericCompositeDimension(
            numerator=numerator, denominator=denominator
        )
    if isinstance(generic, GenericDimension):
        return GenericCompositeDimension(numerator=[self, generic])
    if isinstance(generic, MeasurementUnitType):
        return GenericCompositeDimension(
            numerator=[self, GenericDimension(generic)]
        )
    raise DescriptorBinaryOperationError(f"cannot multiply {self} with {generic}. ")

__pow__(power)

Defines exponentiation of GenericDimension.

Examples:

>>> class TimeUnit(MeasurementUnit): ...
>>> (TimeUnit**2)**3
<GenericDimension: TimeUnit^6>
Source code in src/property_utils/units/descriptors.py
def __pow__(self, power: float) -> "GenericDimension":
    """
    Defines exponentiation of GenericDimension.

    Examples:
        >>> class TimeUnit(MeasurementUnit): ...
        >>> (TimeUnit**2)**3
        <GenericDimension: TimeUnit^6>
    """
    if not isinstance(power, (float, int)):
        raise DescriptorExponentError(
            f"invalid exponent: {{ value: {power}, type: {type(power)} }};"
            " expected float or int. "
        )
    self.power *= power
    return self

__truediv__(generic)

Defines division between GenericDimension(s) and other generic descriptors.

Examples:

>>> class TemperatureUnit(MeasurementUnit): ...
>>> class TimeUnit(MeasurementUnit): ...
>>> TemperatureUnit / (TimeUnit**2)
<GenericCompositeDimension: TemperatureUnit / (TimeUnit^2)>
Source code in src/property_utils/units/descriptors.py
def __truediv__(
    self, generic: GenericUnitDescriptor
) -> "GenericCompositeDimension":
    """
    Defines division between GenericDimension(s) and other generic descriptors.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit): ...
        >>> class TimeUnit(MeasurementUnit): ...
        >>> TemperatureUnit / (TimeUnit**2)
        <GenericCompositeDimension: TemperatureUnit / (TimeUnit^2)>
    """
    if isinstance(generic, GenericCompositeDimension):
        numerator = generic.denominator.copy()
        denominator = generic.numerator.copy()
        numerator.append(self)
        return GenericCompositeDimension(
            numerator=numerator, denominator=denominator
        )
    if isinstance(generic, GenericDimension):
        return GenericCompositeDimension(numerator=[self], denominator=[generic])
    if isinstance(generic, MeasurementUnitType):
        return GenericCompositeDimension(
            numerator=[self], denominator=[GenericDimension(generic)]
        )
    raise DescriptorBinaryOperationError(f"cannot divide {self} with {generic}. ")

inverse_generic()

Create a generic composite with inverse units.

Examples:

>>> class LengthUnit(MeasurementUnit): ...
>>> (LengthUnit**2).inverse_generic()
<GenericCompositeDimension:  / (LengthUnit^2)>
Source code in src/property_utils/units/descriptors.py
def inverse_generic(self) -> "GenericCompositeDimension":
    """
    Create a generic composite with inverse units.

    Examples:
        >>> class LengthUnit(MeasurementUnit): ...
        >>> (LengthUnit**2).inverse_generic()
        <GenericCompositeDimension:  / (LengthUnit^2)>
    """
    return GenericCompositeDimension([], [replace(self)])

is_equivalent(other)

Returns True if this generic is equivalent to the given one, False otherwise.

A generic can be equivalent with another generic if the latter or the former is an alias.

Examples:

>>> class LengthUnit(MeasurementUnit): ...
>>> class MassUnit(MeasurementUnit): ...
>>> class TimeUnit(MeasurementUnit): ...
>>> class ForceUnit(AliasMeasurementUnit):
...     @classmethod
...     def aliased_generic_descriptor(cls):
...         return MassUnit * LengthUnit / (TimeUnit**2)
>>> ForceUnit.is_equivalent(MassUnit * LengthUnit / (TimeUnit**2))
True
>>> class EnergyUnit(AliasMeasurementUnit):
...     @classmethod
...     def aliased_generic_descriptor(cls):
...         return ForceUnit * LengthUnit
>>> EnergyUnit.is_equivalent(MassUnit * (LengthUnit**2) / (TimeUnit**2))
True
Source code in src/property_utils/units/descriptors.py
def is_equivalent(self, other: GenericUnitDescriptor) -> bool:
    """
    Returns True if this generic is equivalent to the given one, False otherwise.

    A generic can be equivalent with another generic if the latter or the former
    is an alias.

    Examples:
        >>> class LengthUnit(MeasurementUnit): ...
        >>> class MassUnit(MeasurementUnit): ...
        >>> class TimeUnit(MeasurementUnit): ...
        >>> class ForceUnit(AliasMeasurementUnit):
        ...     @classmethod
        ...     def aliased_generic_descriptor(cls):
        ...         return MassUnit * LengthUnit / (TimeUnit**2)

        >>> ForceUnit.is_equivalent(MassUnit * LengthUnit / (TimeUnit**2))
        True

        >>> class EnergyUnit(AliasMeasurementUnit):
        ...     @classmethod
        ...     def aliased_generic_descriptor(cls):
        ...         return ForceUnit * LengthUnit

        >>> EnergyUnit.is_equivalent(MassUnit * (LengthUnit**2) / (TimeUnit**2))
        True
    """
    if isinstance(other, MeasurementUnitType):
        if self.unit_type == other and self.power == 1:
            return True

        if issubclass(other, AliasMeasurementUnit):
            return other.aliased_generic_descriptor().is_equivalent(self)  # type: ignore[attr-defined]

    elif isinstance(other, GenericDimension):
        if self.unit_type == other.unit_type and self.power == other.power:
            return True

        if issubclass(other.unit_type, AliasMeasurementUnit):
            return (
                other.unit_type.aliased_generic_descriptor() ** other.power
            ).is_equivalent(self)

        if issubclass(self.unit_type, AliasMeasurementUnit):
            return (
                self.unit_type.aliased_generic_descriptor() ** self.power
            ).is_equivalent(other)

    elif isinstance(other, GenericCompositeDimension):
        if (
            other.denominator == []
            and len(other.numerator) == 1
            and other.numerator[0].is_equivalent(self)
        ):
            return True

        if issubclass(self.unit_type, AliasMeasurementUnit):
            return (
                self.unit_type.aliased_generic_descriptor() ** self.power
            ).is_equivalent(other)

    return False

to_si()

Create a Dimension with SI units.

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     CELCIUS = "C"
...     KELVIN = "K"
...     @classmethod
...     def si(cls): return cls.KELVIN
>>> (TemperatureUnit**2).to_si()
<Dimension: K^2>
Source code in src/property_utils/units/descriptors.py
def to_si(self) -> "Dimension":
    """
    Create a Dimension with SI units.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     CELCIUS = "C"
        ...     KELVIN = "K"
        ...     @classmethod
        ...     def si(cls): return cls.KELVIN
        >>> (TemperatureUnit**2).to_si()
        <Dimension: K^2>
    """
    return Dimension(self.unit_type.to_si(), self.power)

GenericUnitDescriptor

Bases: Protocol

Descriptor for a property unit that does not have a specific unit.

e.g. a generic descriptor can represent a Temperature unit that does not have a specific value like Celcius or Fahrenheit.

Source code in src/property_utils/units/descriptors.py
class GenericUnitDescriptor(Protocol):
    """
    Descriptor for a property unit that does not have a specific unit.

    e.g. a  generic descriptor can represent a Temperature unit that does not have a
    specific value like Celcius or Fahrenheit.
    """

    def to_si(self) -> "UnitDescriptor":
        """
        Create a unit descriptor with SI units.
        """

    def inverse_generic(self) -> "GenericCompositeDimension":
        """
        Create a generic composite with inverse units.
        """

    def is_equivalent(self, other: "GenericUnitDescriptor") -> bool:
        """
        Returns True if this generic is equivalent to the given one, False otherwise.

        A generic can be equivalent with another generic if the latter or the former
        is an alias.
        """

    def __mul__(
        self, generic: "GenericUnitDescriptor"
    ) -> "GenericCompositeDimension": ...

    def __truediv__(
        self, generic: "GenericUnitDescriptor"
    ) -> "GenericCompositeDimension": ...

    def __pow__(self, power: float) -> "GenericUnitDescriptor": ...

    def __eq__(self, generic) -> bool: ...

    def __hash__(self) -> int: ...

    def __str__(self) -> str: ...

inverse_generic()

Create a generic composite with inverse units.

Source code in src/property_utils/units/descriptors.py
def inverse_generic(self) -> "GenericCompositeDimension":
    """
    Create a generic composite with inverse units.
    """

is_equivalent(other)

Returns True if this generic is equivalent to the given one, False otherwise.

A generic can be equivalent with another generic if the latter or the former is an alias.

Source code in src/property_utils/units/descriptors.py
def is_equivalent(self, other: "GenericUnitDescriptor") -> bool:
    """
    Returns True if this generic is equivalent to the given one, False otherwise.

    A generic can be equivalent with another generic if the latter or the former
    is an alias.
    """

to_si()

Create a unit descriptor with SI units.

Source code in src/property_utils/units/descriptors.py
def to_si(self) -> "UnitDescriptor":
    """
    Create a unit descriptor with SI units.
    """

MeasurementUnit

Bases: Enum

Base class for all measurement units of physical quantities.

Each measurement-unit class is an enumeration of the available units for a quantity.

Subclasses should only enumerate measurement units of primitive physical quantities, i.e. units that cannot be produced from other units. e.g. length is an acceptable quantity, but volume is not because its' units are produced from length units.

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     CELCIUS = "C"
...     KELVIN = "K"
...     RANKINE = "R"
...     FAHRENHEIT = "F"
Source code in src/property_utils/units/descriptors.py
class MeasurementUnit(Enum, metaclass=MeasurementUnitMeta):
    """
    Base class for all measurement units of physical quantities.

    Each measurement-unit class is an enumeration of the available units for a
    quantity.

    Subclasses should only enumerate measurement units of primitive physical
    quantities, i.e. units that cannot be produced from other units.
    e.g. length is an acceptable quantity, but volume is not because its' units are
    produced from length units.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     CELCIUS = "C"
        ...     KELVIN = "K"
        ...     RANKINE = "R"
        ...     FAHRENHEIT = "F"
    """

    @classmethod
    def si(cls) -> "MeasurementUnit":
        """
        Returns the SI unit of this measurement unit.
        """
        raise NotImplementedError

    @classmethod
    def is_non_dimensional(cls) -> bool:
        """
        Implement this function for defined measurement units that are non dimensional.

        Examples:
            >>> class NonDimensionalUnit(MeasurementUnit):
            ...     NON_DIMENSIONAL = ""
            ...     @classmethod
            ...     def is_non_dimensional(cls) -> bool: return True

            >>> NonDimensionalUnit.is_non_dimensional()
            True
        """
        return False

    @staticmethod
    def from_descriptor(descriptor: UnitDescriptor) -> "MeasurementUnit":
        """
        Create a MeasurementUnit from given descriptor.
        If descriptor is already a MeasurementUnit, it returns the same object.

        This function does not serve as a constructor for MeasurementUnit, rather it
        is intended to be used to convert an unknown unit descriptor to a
        MeasurementUnit.

        Raises `UnitDescriptorTypeError` if given descriptor cannot be translated
        to a MeasurementUnit instance.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     CELCIUS = "C"

            >>> celcius = MeasurementUnit.from_descriptor(TemperatureUnit.CELCIUS**2)
            >>> celcius
            <TemperatureUnit: C>
        """
        if isinstance(descriptor, Dimension):
            return descriptor.unit
        if isinstance(descriptor, MeasurementUnit):
            return descriptor
        raise UnitDescriptorTypeError(
            f"cannot create MeasurementUnit from descriptor: {descriptor}"
        )

    def isinstance(self, generic: GenericUnitDescriptor) -> bool:
        """
        Returns True if the MeasurementUnit is an instance of the generic, False
        otherwise.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     CELCIUS = "C"

            >>> class LengthUnit(MeasurementUnit):
            ...     METER = "m"

            >>> TemperatureUnit.CELCIUS.isinstance(TemperatureUnit)
            True

            >>> TemperatureUnit.CELCIUS.isinstance(LengthUnit)
            False
        """
        return type(self) == generic  # pylint: disable=unidiomatic-typecheck

    def isinstance_equivalent(self, generic: GenericUnitDescriptor) -> bool:
        """
        Returns True if the UnitDescriptor is an instance-equivalent of the generic,
        False otherwise.

        A unit descriptor is an instance-equivalent of a generic if the generic of the
        unit descriptor is equivalent to the generic.

        Equivalence between generics is checked with the `is_equivalent` method.

        Examples:
            >>> class LengthUnit(MeasurementUnit): ...
            >>> class AreaUnit(AliasMeasurementUnit):
            ...     HECTARE = "ha"
            ...     @classmethod
            ...     def aliased_generic_descriptor(cls): return LengthUnit**2

            >>> AreaUnit.HECTARE.isinstance_equivalent(AreaUnit)
            True
            >>> AreaUnit.HECTARE.isinstance_equivalent(LengthUnit**2)
            True
        """
        return self.to_generic().is_equivalent(generic)

    def to_generic(self) -> GenericUnitDescriptor:
        """
        Create a generic descriptor from this MeasurementUnit.

        Examples:
            >>> class AmountUnit(MeasurementUnit):
            ...     MOL = "mol"

            >>> AmountUnit.MOL.to_generic()
            <MeasurementUnit: AmountUnit>
        """
        return self.__class__

    def inverse(self) -> "CompositeDimension":
        """
        Create a composite with inverse units.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     KELVIN = "K"
            >>> TemperatureUnit.KELVIN.inverse()
            <CompositeDimension:  / K>
        """
        return CompositeDimension([], [Dimension(self)])

    def __mul__(self, descriptor: UnitDescriptor) -> "CompositeDimension":
        """
        Defines multiplication between MeasurementUnit objects and other unit descriptors.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     FAHRENHEIT = "F"
            >>> class TimeUnit(MeasurementUnit):
            ...     HOUR = "hr"
            >>> TemperatureUnit.FAHRENHEIT * TimeUnit.HOUR
            <CompositeDimension: F * hr>
        """
        if isinstance(descriptor, MeasurementUnit):
            return Dimension(self) * Dimension(descriptor)
        if isinstance(descriptor, (Dimension, CompositeDimension)):
            return Dimension(self) * descriptor
        raise DescriptorBinaryOperationError(
            f"cannot multiply {self} with {descriptor}. "
        )

    def __truediv__(self, descriptor: UnitDescriptor) -> "CompositeDimension":
        """
        Defines division between MeasurementUnit objects and other unit descriptors.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     FAHRENHEIT = "F"
            >>> class TimeUnit(MeasurementUnit):
            ...     HOUR = "hr"
            >>> TemperatureUnit.FAHRENHEIT / TimeUnit.HOUR
            <CompositeDimension: F / hr>
        """
        if isinstance(descriptor, MeasurementUnit):
            return Dimension(self) / Dimension(descriptor)
        if isinstance(descriptor, (Dimension, CompositeDimension)):
            return Dimension(self) / descriptor
        raise DescriptorBinaryOperationError(
            f"cannot divide {self} with {descriptor}. "
        )

    def __pow__(self, power: float) -> "Dimension":
        """
        Defines exponentiation of MeasurementUnit objects.

        Examples:
            >>> class LengthUnit(MeasurementUnit):
            ...     FEET = "ft"
            >>> LengthUnit.FEET**3
            <Dimension: ft^3>
        """
        # always keep non dimensional units to the first power
        power = 1 if self.is_non_dimensional() else power

        return Dimension(self, power)

    def __hash__(self) -> int:
        return hash(self.value)

    def __repr__(self) -> str:
        return f"<{self.__class__.__name__}: {str(self)}>"

    def __str__(self) -> str:
        return self.value

__mul__(descriptor)

Defines multiplication between MeasurementUnit objects and other unit descriptors.

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     FAHRENHEIT = "F"
>>> class TimeUnit(MeasurementUnit):
...     HOUR = "hr"
>>> TemperatureUnit.FAHRENHEIT * TimeUnit.HOUR
<CompositeDimension: F * hr>
Source code in src/property_utils/units/descriptors.py
def __mul__(self, descriptor: UnitDescriptor) -> "CompositeDimension":
    """
    Defines multiplication between MeasurementUnit objects and other unit descriptors.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     FAHRENHEIT = "F"
        >>> class TimeUnit(MeasurementUnit):
        ...     HOUR = "hr"
        >>> TemperatureUnit.FAHRENHEIT * TimeUnit.HOUR
        <CompositeDimension: F * hr>
    """
    if isinstance(descriptor, MeasurementUnit):
        return Dimension(self) * Dimension(descriptor)
    if isinstance(descriptor, (Dimension, CompositeDimension)):
        return Dimension(self) * descriptor
    raise DescriptorBinaryOperationError(
        f"cannot multiply {self} with {descriptor}. "
    )

__pow__(power)

Defines exponentiation of MeasurementUnit objects.

Examples:

>>> class LengthUnit(MeasurementUnit):
...     FEET = "ft"
>>> LengthUnit.FEET**3
<Dimension: ft^3>
Source code in src/property_utils/units/descriptors.py
def __pow__(self, power: float) -> "Dimension":
    """
    Defines exponentiation of MeasurementUnit objects.

    Examples:
        >>> class LengthUnit(MeasurementUnit):
        ...     FEET = "ft"
        >>> LengthUnit.FEET**3
        <Dimension: ft^3>
    """
    # always keep non dimensional units to the first power
    power = 1 if self.is_non_dimensional() else power

    return Dimension(self, power)

__truediv__(descriptor)

Defines division between MeasurementUnit objects and other unit descriptors.

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     FAHRENHEIT = "F"
>>> class TimeUnit(MeasurementUnit):
...     HOUR = "hr"
>>> TemperatureUnit.FAHRENHEIT / TimeUnit.HOUR
<CompositeDimension: F / hr>
Source code in src/property_utils/units/descriptors.py
def __truediv__(self, descriptor: UnitDescriptor) -> "CompositeDimension":
    """
    Defines division between MeasurementUnit objects and other unit descriptors.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     FAHRENHEIT = "F"
        >>> class TimeUnit(MeasurementUnit):
        ...     HOUR = "hr"
        >>> TemperatureUnit.FAHRENHEIT / TimeUnit.HOUR
        <CompositeDimension: F / hr>
    """
    if isinstance(descriptor, MeasurementUnit):
        return Dimension(self) / Dimension(descriptor)
    if isinstance(descriptor, (Dimension, CompositeDimension)):
        return Dimension(self) / descriptor
    raise DescriptorBinaryOperationError(
        f"cannot divide {self} with {descriptor}. "
    )

from_descriptor(descriptor) staticmethod

Create a MeasurementUnit from given descriptor. If descriptor is already a MeasurementUnit, it returns the same object.

This function does not serve as a constructor for MeasurementUnit, rather it is intended to be used to convert an unknown unit descriptor to a MeasurementUnit.

Raises UnitDescriptorTypeError if given descriptor cannot be translated to a MeasurementUnit instance.

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     CELCIUS = "C"
>>> celcius = MeasurementUnit.from_descriptor(TemperatureUnit.CELCIUS**2)
>>> celcius
<TemperatureUnit: C>
Source code in src/property_utils/units/descriptors.py
@staticmethod
def from_descriptor(descriptor: UnitDescriptor) -> "MeasurementUnit":
    """
    Create a MeasurementUnit from given descriptor.
    If descriptor is already a MeasurementUnit, it returns the same object.

    This function does not serve as a constructor for MeasurementUnit, rather it
    is intended to be used to convert an unknown unit descriptor to a
    MeasurementUnit.

    Raises `UnitDescriptorTypeError` if given descriptor cannot be translated
    to a MeasurementUnit instance.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     CELCIUS = "C"

        >>> celcius = MeasurementUnit.from_descriptor(TemperatureUnit.CELCIUS**2)
        >>> celcius
        <TemperatureUnit: C>
    """
    if isinstance(descriptor, Dimension):
        return descriptor.unit
    if isinstance(descriptor, MeasurementUnit):
        return descriptor
    raise UnitDescriptorTypeError(
        f"cannot create MeasurementUnit from descriptor: {descriptor}"
    )

inverse()

Create a composite with inverse units.

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     KELVIN = "K"
>>> TemperatureUnit.KELVIN.inverse()
<CompositeDimension:  / K>
Source code in src/property_utils/units/descriptors.py
def inverse(self) -> "CompositeDimension":
    """
    Create a composite with inverse units.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     KELVIN = "K"
        >>> TemperatureUnit.KELVIN.inverse()
        <CompositeDimension:  / K>
    """
    return CompositeDimension([], [Dimension(self)])

is_non_dimensional() classmethod

Implement this function for defined measurement units that are non dimensional.

Examples:

>>> class NonDimensionalUnit(MeasurementUnit):
...     NON_DIMENSIONAL = ""
...     @classmethod
...     def is_non_dimensional(cls) -> bool: return True
>>> NonDimensionalUnit.is_non_dimensional()
True
Source code in src/property_utils/units/descriptors.py
@classmethod
def is_non_dimensional(cls) -> bool:
    """
    Implement this function for defined measurement units that are non dimensional.

    Examples:
        >>> class NonDimensionalUnit(MeasurementUnit):
        ...     NON_DIMENSIONAL = ""
        ...     @classmethod
        ...     def is_non_dimensional(cls) -> bool: return True

        >>> NonDimensionalUnit.is_non_dimensional()
        True
    """
    return False

isinstance(generic)

Returns True if the MeasurementUnit is an instance of the generic, False otherwise.

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     CELCIUS = "C"
>>> class LengthUnit(MeasurementUnit):
...     METER = "m"
>>> TemperatureUnit.CELCIUS.isinstance(TemperatureUnit)
True
>>> TemperatureUnit.CELCIUS.isinstance(LengthUnit)
False
Source code in src/property_utils/units/descriptors.py
def isinstance(self, generic: GenericUnitDescriptor) -> bool:
    """
    Returns True if the MeasurementUnit is an instance of the generic, False
    otherwise.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     CELCIUS = "C"

        >>> class LengthUnit(MeasurementUnit):
        ...     METER = "m"

        >>> TemperatureUnit.CELCIUS.isinstance(TemperatureUnit)
        True

        >>> TemperatureUnit.CELCIUS.isinstance(LengthUnit)
        False
    """
    return type(self) == generic  # pylint: disable=unidiomatic-typecheck

isinstance_equivalent(generic)

Returns True if the UnitDescriptor is an instance-equivalent of the generic, False otherwise.

A unit descriptor is an instance-equivalent of a generic if the generic of the unit descriptor is equivalent to the generic.

Equivalence between generics is checked with the is_equivalent method.

Examples:

>>> class LengthUnit(MeasurementUnit): ...
>>> class AreaUnit(AliasMeasurementUnit):
...     HECTARE = "ha"
...     @classmethod
...     def aliased_generic_descriptor(cls): return LengthUnit**2
>>> AreaUnit.HECTARE.isinstance_equivalent(AreaUnit)
True
>>> AreaUnit.HECTARE.isinstance_equivalent(LengthUnit**2)
True
Source code in src/property_utils/units/descriptors.py
def isinstance_equivalent(self, generic: GenericUnitDescriptor) -> bool:
    """
    Returns True if the UnitDescriptor is an instance-equivalent of the generic,
    False otherwise.

    A unit descriptor is an instance-equivalent of a generic if the generic of the
    unit descriptor is equivalent to the generic.

    Equivalence between generics is checked with the `is_equivalent` method.

    Examples:
        >>> class LengthUnit(MeasurementUnit): ...
        >>> class AreaUnit(AliasMeasurementUnit):
        ...     HECTARE = "ha"
        ...     @classmethod
        ...     def aliased_generic_descriptor(cls): return LengthUnit**2

        >>> AreaUnit.HECTARE.isinstance_equivalent(AreaUnit)
        True
        >>> AreaUnit.HECTARE.isinstance_equivalent(LengthUnit**2)
        True
    """
    return self.to_generic().is_equivalent(generic)

si() classmethod

Returns the SI unit of this measurement unit.

Source code in src/property_utils/units/descriptors.py
@classmethod
def si(cls) -> "MeasurementUnit":
    """
    Returns the SI unit of this measurement unit.
    """
    raise NotImplementedError

to_generic()

Create a generic descriptor from this MeasurementUnit.

Examples:

>>> class AmountUnit(MeasurementUnit):
...     MOL = "mol"
>>> AmountUnit.MOL.to_generic()
<MeasurementUnit: AmountUnit>
Source code in src/property_utils/units/descriptors.py
def to_generic(self) -> GenericUnitDescriptor:
    """
    Create a generic descriptor from this MeasurementUnit.

    Examples:
        >>> class AmountUnit(MeasurementUnit):
        ...     MOL = "mol"

        >>> AmountUnit.MOL.to_generic()
        <MeasurementUnit: AmountUnit>
    """
    return self.__class__

MeasurementUnitMeta

Bases: EnumMeta

Metaclass for MeasurementUnit. Defines multiplication, division and exponent operations for MeasurementUnit class (and subclasses). These operations produce GenericUnitDescriptor(s).

Source code in src/property_utils/units/descriptors.py
class MeasurementUnitMeta(EnumMeta):
    """
    Metaclass for MeasurementUnit. Defines multiplication, division and exponent
    operations for MeasurementUnit class (and subclasses). These operations produce
    GenericUnitDescriptor(s).
    """

    def to_si(cls) -> "MeasurementUnit":
        """
        Create a MeasurementUnit with SI units.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit):
            ...     CELCIUS = "C"
            ...     KELVIN = "K"
            ...     @classmethod
            ...     def si(cls):
            ...         return cls.KELVIN
            >>> TemperatureUnit.to_si()
            <TemperatureUnit: K>
        """
        if hasattr(cls, "si"):
            return cls.si()
        raise NotImplementedError

    def inverse_generic(cls) -> "GenericCompositeDimension":
        """
        Create a generic composite with inverse units.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit): ...
            >>> TemperatureUnit.inverse_generic()
            <GenericCompositeDimension:  / TemperatureUnit>
        """
        return GenericCompositeDimension([], [GenericDimension(cls)])

    # pylint: disable=too-many-return-statements
    def is_equivalent(cls, other: GenericUnitDescriptor) -> bool:
        """
        Returns True if this generic is equivalent to the given one, False otherwise.

        A generic can be equivalent with another generic if the latter or the former
        is an alias.

        Examples:
            >>> class LengthUnit(MeasurementUnit): ...
            >>> class MassUnit(MeasurementUnit): ...
            >>> class TimeUnit(MeasurementUnit): ...
            >>> class ForceUnit(AliasMeasurementUnit):
            ...     @classmethod
            ...     def aliased_generic_descriptor(cls):
            ...         return MassUnit * LengthUnit / (TimeUnit**2)

            >>> ForceUnit.is_equivalent(MassUnit * LengthUnit / (TimeUnit**2))
            True

            >>> class EnergyUnit(AliasMeasurementUnit):
            ...     @classmethod
            ...     def aliased_generic_descriptor(cls):
            ...         return ForceUnit * LengthUnit

            >>> EnergyUnit.is_equivalent(MassUnit * (LengthUnit**2) / (TimeUnit**2))
            True
        """
        if isinstance(other, MeasurementUnitType):
            return cls == other

        if isinstance(other, GenericDimension):
            if cls == other.unit_type and other.power == 1:
                return True

            if issubclass(other.unit_type, AliasMeasurementUnit):
                return (
                    other.unit_type.aliased_generic_descriptor() ** other.power
                ).is_equivalent(cls)

            if issubclass(cls, AliasMeasurementUnit):
                return cls.aliased_generic_descriptor().is_equivalent(other)

        elif isinstance(other, GenericCompositeDimension):
            if (
                other.denominator == []
                and len(other.numerator) == 1
                and other.numerator[0].is_equivalent(cls)
            ):
                return True

            if issubclass(cls, AliasMeasurementUnit):
                return cls.aliased_generic_descriptor().is_equivalent(other)

        return False

    def __mul__(cls, other: GenericUnitDescriptor) -> "GenericCompositeDimension":
        """
        Defines multiplication between MeasurementUnit types and other generic
        descriptors.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit): ...
            >>> class TimeUnit(MeasurementUnit): ...
            >>> TemperatureUnit * TimeUnit
            <GenericCompositeDimension: TemperatureUnit * TimeUnit>
        """
        if isinstance(other, GenericCompositeDimension):
            numerator = other.numerator.copy()
            denominator = other.denominator.copy()
            numerator.append(GenericDimension(cls))
            return GenericCompositeDimension(
                numerator=numerator, denominator=denominator
            )
        if isinstance(other, GenericDimension):
            return GenericCompositeDimension(numerator=[GenericDimension(cls), other])
        if isinstance(other, MeasurementUnitType):
            return GenericCompositeDimension(
                numerator=[
                    GenericDimension(cls),
                    GenericDimension(other),
                ]
            )
        raise DescriptorBinaryOperationError(f"cannot multiply {cls} with {other}. ")

    def __truediv__(cls, other: GenericUnitDescriptor) -> "GenericCompositeDimension":
        """
        Defines division between MeasurementUnit types and other generic
        descriptors.

        Examples:
            >>> class TemperatureUnit(MeasurementUnit): ...
            >>> class TimeUnit(MeasurementUnit): ...
            >>> TemperatureUnit / TimeUnit
            <GenericCompositeDimension: TemperatureUnit / TimeUnit>
        """
        if isinstance(other, GenericCompositeDimension):
            numerator = other.denominator.copy()
            denominator = other.numerator.copy()
            numerator.append(GenericDimension(cls))
            return GenericCompositeDimension(
                numerator=numerator, denominator=denominator
            )
        if isinstance(other, GenericDimension):
            return GenericCompositeDimension(
                numerator=[GenericDimension(cls)], denominator=[other]
            )
        if isinstance(other, MeasurementUnitType):
            return GenericCompositeDimension(
                numerator=[GenericDimension(cls)],
                denominator=[GenericDimension(other)],
            )
        raise DescriptorBinaryOperationError(f"cannot divide {cls} with {other}. ")

    def __pow__(cls, power: float) -> "GenericDimension":
        """
        Defines exponentiation of MeasurementUnit types.

        Examples:
            >>> class TimeUnit(MeasurementUnit): ...
            >>> TimeUnit**3
            <GenericDimension: TimeUnit^3>
        """
        return GenericDimension(cls, power)

    def __str__(cls) -> str:
        return cls.__name__

    def __repr__(cls) -> str:
        return f"<MeasurementUnit: {str(cls)}>"

__mul__(other)

Defines multiplication between MeasurementUnit types and other generic descriptors.

Examples:

>>> class TemperatureUnit(MeasurementUnit): ...
>>> class TimeUnit(MeasurementUnit): ...
>>> TemperatureUnit * TimeUnit
<GenericCompositeDimension: TemperatureUnit * TimeUnit>
Source code in src/property_utils/units/descriptors.py
def __mul__(cls, other: GenericUnitDescriptor) -> "GenericCompositeDimension":
    """
    Defines multiplication between MeasurementUnit types and other generic
    descriptors.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit): ...
        >>> class TimeUnit(MeasurementUnit): ...
        >>> TemperatureUnit * TimeUnit
        <GenericCompositeDimension: TemperatureUnit * TimeUnit>
    """
    if isinstance(other, GenericCompositeDimension):
        numerator = other.numerator.copy()
        denominator = other.denominator.copy()
        numerator.append(GenericDimension(cls))
        return GenericCompositeDimension(
            numerator=numerator, denominator=denominator
        )
    if isinstance(other, GenericDimension):
        return GenericCompositeDimension(numerator=[GenericDimension(cls), other])
    if isinstance(other, MeasurementUnitType):
        return GenericCompositeDimension(
            numerator=[
                GenericDimension(cls),
                GenericDimension(other),
            ]
        )
    raise DescriptorBinaryOperationError(f"cannot multiply {cls} with {other}. ")

__pow__(power)

Defines exponentiation of MeasurementUnit types.

Examples:

>>> class TimeUnit(MeasurementUnit): ...
>>> TimeUnit**3
<GenericDimension: TimeUnit^3>
Source code in src/property_utils/units/descriptors.py
def __pow__(cls, power: float) -> "GenericDimension":
    """
    Defines exponentiation of MeasurementUnit types.

    Examples:
        >>> class TimeUnit(MeasurementUnit): ...
        >>> TimeUnit**3
        <GenericDimension: TimeUnit^3>
    """
    return GenericDimension(cls, power)

__truediv__(other)

Defines division between MeasurementUnit types and other generic descriptors.

Examples:

>>> class TemperatureUnit(MeasurementUnit): ...
>>> class TimeUnit(MeasurementUnit): ...
>>> TemperatureUnit / TimeUnit
<GenericCompositeDimension: TemperatureUnit / TimeUnit>
Source code in src/property_utils/units/descriptors.py
def __truediv__(cls, other: GenericUnitDescriptor) -> "GenericCompositeDimension":
    """
    Defines division between MeasurementUnit types and other generic
    descriptors.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit): ...
        >>> class TimeUnit(MeasurementUnit): ...
        >>> TemperatureUnit / TimeUnit
        <GenericCompositeDimension: TemperatureUnit / TimeUnit>
    """
    if isinstance(other, GenericCompositeDimension):
        numerator = other.denominator.copy()
        denominator = other.numerator.copy()
        numerator.append(GenericDimension(cls))
        return GenericCompositeDimension(
            numerator=numerator, denominator=denominator
        )
    if isinstance(other, GenericDimension):
        return GenericCompositeDimension(
            numerator=[GenericDimension(cls)], denominator=[other]
        )
    if isinstance(other, MeasurementUnitType):
        return GenericCompositeDimension(
            numerator=[GenericDimension(cls)],
            denominator=[GenericDimension(other)],
        )
    raise DescriptorBinaryOperationError(f"cannot divide {cls} with {other}. ")

inverse_generic()

Create a generic composite with inverse units.

Examples:

>>> class TemperatureUnit(MeasurementUnit): ...
>>> TemperatureUnit.inverse_generic()
<GenericCompositeDimension:  / TemperatureUnit>
Source code in src/property_utils/units/descriptors.py
def inverse_generic(cls) -> "GenericCompositeDimension":
    """
    Create a generic composite with inverse units.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit): ...
        >>> TemperatureUnit.inverse_generic()
        <GenericCompositeDimension:  / TemperatureUnit>
    """
    return GenericCompositeDimension([], [GenericDimension(cls)])

is_equivalent(other)

Returns True if this generic is equivalent to the given one, False otherwise.

A generic can be equivalent with another generic if the latter or the former is an alias.

Examples:

>>> class LengthUnit(MeasurementUnit): ...
>>> class MassUnit(MeasurementUnit): ...
>>> class TimeUnit(MeasurementUnit): ...
>>> class ForceUnit(AliasMeasurementUnit):
...     @classmethod
...     def aliased_generic_descriptor(cls):
...         return MassUnit * LengthUnit / (TimeUnit**2)
>>> ForceUnit.is_equivalent(MassUnit * LengthUnit / (TimeUnit**2))
True
>>> class EnergyUnit(AliasMeasurementUnit):
...     @classmethod
...     def aliased_generic_descriptor(cls):
...         return ForceUnit * LengthUnit
>>> EnergyUnit.is_equivalent(MassUnit * (LengthUnit**2) / (TimeUnit**2))
True
Source code in src/property_utils/units/descriptors.py
def is_equivalent(cls, other: GenericUnitDescriptor) -> bool:
    """
    Returns True if this generic is equivalent to the given one, False otherwise.

    A generic can be equivalent with another generic if the latter or the former
    is an alias.

    Examples:
        >>> class LengthUnit(MeasurementUnit): ...
        >>> class MassUnit(MeasurementUnit): ...
        >>> class TimeUnit(MeasurementUnit): ...
        >>> class ForceUnit(AliasMeasurementUnit):
        ...     @classmethod
        ...     def aliased_generic_descriptor(cls):
        ...         return MassUnit * LengthUnit / (TimeUnit**2)

        >>> ForceUnit.is_equivalent(MassUnit * LengthUnit / (TimeUnit**2))
        True

        >>> class EnergyUnit(AliasMeasurementUnit):
        ...     @classmethod
        ...     def aliased_generic_descriptor(cls):
        ...         return ForceUnit * LengthUnit

        >>> EnergyUnit.is_equivalent(MassUnit * (LengthUnit**2) / (TimeUnit**2))
        True
    """
    if isinstance(other, MeasurementUnitType):
        return cls == other

    if isinstance(other, GenericDimension):
        if cls == other.unit_type and other.power == 1:
            return True

        if issubclass(other.unit_type, AliasMeasurementUnit):
            return (
                other.unit_type.aliased_generic_descriptor() ** other.power
            ).is_equivalent(cls)

        if issubclass(cls, AliasMeasurementUnit):
            return cls.aliased_generic_descriptor().is_equivalent(other)

    elif isinstance(other, GenericCompositeDimension):
        if (
            other.denominator == []
            and len(other.numerator) == 1
            and other.numerator[0].is_equivalent(cls)
        ):
            return True

        if issubclass(cls, AliasMeasurementUnit):
            return cls.aliased_generic_descriptor().is_equivalent(other)

    return False

to_si()

Create a MeasurementUnit with SI units.

Examples:

>>> class TemperatureUnit(MeasurementUnit):
...     CELCIUS = "C"
...     KELVIN = "K"
...     @classmethod
...     def si(cls):
...         return cls.KELVIN
>>> TemperatureUnit.to_si()
<TemperatureUnit: K>
Source code in src/property_utils/units/descriptors.py
def to_si(cls) -> "MeasurementUnit":
    """
    Create a MeasurementUnit with SI units.

    Examples:
        >>> class TemperatureUnit(MeasurementUnit):
        ...     CELCIUS = "C"
        ...     KELVIN = "K"
        ...     @classmethod
        ...     def si(cls):
        ...         return cls.KELVIN
        >>> TemperatureUnit.to_si()
        <TemperatureUnit: K>
    """
    if hasattr(cls, "si"):
        return cls.si()
    raise NotImplementedError

UnitDescriptor

Bases: Protocol

Descriptor for a property unit that has a specific unit, e.g. cm^2 or ft^2.

Source code in src/property_utils/units/descriptors.py
class UnitDescriptor(Protocol):
    """
    Descriptor for a property unit that has a specific unit, e.g. cm^2 or ft^2.
    """

    def si(self) -> "UnitDescriptor":
        """
        Returns this descriptor with SI units.
        """

    def isinstance(self, generic: GenericUnitDescriptor) -> bool:
        """
        Returns True if the UnitDescriptor is an instance of the generic, False
        otherwise.

        A unit descriptor is an instance of a generic if the generic of the unit
        descriptor is equal to the generic.

        Equality between generics is checked with the `==` operator.
        """

    def isinstance_equivalent(self, generic: GenericUnitDescriptor) -> bool:
        """
        Returns True if the UnitDescriptor is an instance-equivalent of the generic,
        False otherwise.

        A unit descriptor is an instance-equivalent of a generic if the generic of the
        unit descriptor is equivalent to the generic.

        Equivalence between generics is checked with the `is_equivalent` method.
        """

    def to_generic(self) -> GenericUnitDescriptor:
        """
        Create a generic descriptor from this UnitDescriptor.
        """

    def inverse(self) -> "CompositeDimension":
        """
        Create a composite with inverse units.
        """

    def __mul__(self, descriptor: "UnitDescriptor") -> "CompositeDimension": ...

    def __truediv__(self, descriptor: "UnitDescriptor") -> "CompositeDimension": ...

    def __pow__(self, power: float) -> "UnitDescriptor": ...

    def __hash__(self) -> int: ...

    def __str__(self) -> str: ...

inverse()

Create a composite with inverse units.

Source code in src/property_utils/units/descriptors.py
def inverse(self) -> "CompositeDimension":
    """
    Create a composite with inverse units.
    """

isinstance(generic)

Returns True if the UnitDescriptor is an instance of the generic, False otherwise.

A unit descriptor is an instance of a generic if the generic of the unit descriptor is equal to the generic.

Equality between generics is checked with the == operator.

Source code in src/property_utils/units/descriptors.py
def isinstance(self, generic: GenericUnitDescriptor) -> bool:
    """
    Returns True if the UnitDescriptor is an instance of the generic, False
    otherwise.

    A unit descriptor is an instance of a generic if the generic of the unit
    descriptor is equal to the generic.

    Equality between generics is checked with the `==` operator.
    """

isinstance_equivalent(generic)

Returns True if the UnitDescriptor is an instance-equivalent of the generic, False otherwise.

A unit descriptor is an instance-equivalent of a generic if the generic of the unit descriptor is equivalent to the generic.

Equivalence between generics is checked with the is_equivalent method.

Source code in src/property_utils/units/descriptors.py
def isinstance_equivalent(self, generic: GenericUnitDescriptor) -> bool:
    """
    Returns True if the UnitDescriptor is an instance-equivalent of the generic,
    False otherwise.

    A unit descriptor is an instance-equivalent of a generic if the generic of the
    unit descriptor is equivalent to the generic.

    Equivalence between generics is checked with the `is_equivalent` method.
    """

si()

Returns this descriptor with SI units.

Source code in src/property_utils/units/descriptors.py
def si(self) -> "UnitDescriptor":
    """
    Returns this descriptor with SI units.
    """

to_generic()

Create a generic descriptor from this UnitDescriptor.

Source code in src/property_utils/units/descriptors.py
def to_generic(self) -> GenericUnitDescriptor:
    """
    Create a generic descriptor from this UnitDescriptor.
    """